
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A24 6 067

S ELECTE -

FEB 201992D

D THESIS

THE INTEGRATION SYSTEM
FOR

THE LOW COST COMBAT DIRECTION SYSTEM

by

Willie Kelly Bolick
and

Richard Thomas Irwin

September 1991
Thesis Advisor: Dr. Valdis Berzins

Approved for public release; distribution is unlimited.

/ 92.03716

REPORT DOCUMENTATION PAGE
1 a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED l b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;

distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

U. NAME OF ERFORMBG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
omputer 9cience Vept. (if applicable) Naval Postgraduate School

Naval Postgraduate School CS

So. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
THE INTEGRATION SYSTEM FOR THE LOW COST COMBAT DIRECTION SYSTEM

. E s S

o c ,le ell; Irwin, Richard Thomas
3a TYP Q REPORT 13b. TIME COVERED 9 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Wvaster s, fhesi FROM.09/90 TO 09/9 1991, September. 10 j 278
16 SUPPLEMENTARY NOTATIOIhe views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identity by block number)

FIELD GROUP ISUB-GROUP Combat Direction Center, Software Engineering, Integration System

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
In a world where changes in technology occur each minute, th demand for a hard Real Time embedded computer system deployed

on board naval ships not equipped with Naval Tactical Data System increases. As the demand increases, an important fact looms, a new
approach to software development and system design is essential. The approach used in our research started with the requirement specifying
use of Ada as the design language with UNIX as the operating system, and selection of the commercial workstation rugged enough to
withstand shipboard requirements. The system requires standard power with no special interface equipment for adaptation to shipboard
application. Specific benefits include ease of maintenance and expansion of ongoing processes and applications, allowing the system to grow
as the need grows.

This study provides a detailed set of requirements, functional specifications, designs, and a prototype implementation of the Integration
System for such a system. The approach taken is to implement the basic features of a Combat Direction System (CDS) on a commercially
available microprocessor workstation. This Integration System for the Low Cost Combat Direction System meets all the requirements
specified by the Naval Sea Systems Command. The code provides the basic elements and is designed for integration of a database, a user
interface, and the ships sensors necessary to provide essential data to operate the system.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED [] SAME AS RPT [] DTIC USERS UNCLASSIFIED

salIAMFOF RESPONSIBLE INDIVIDUAL 22b TELEPHONEIncude Area Code) 22c E[CE SYMBOL

ais T erzins (408) 646-2461Ie

Approved for public release; distribution is unlimited

THE INTEGRATION SYSTEM
FOR

THE LOW COST COMBAT DIRECTION SYSTEM

by

Willie Kelly Bolick
Lieutenant, United States Navy

B.S., University of Arkansas, 1977
M.S., Arkansas State University, 1980

and
Richard Thomas Irwin

Lieutenant. United States Navy
B.S., University of Michigan-Flint, 1983

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1991

Authors: , < /K ,._./
Wiljje lly Bolick

Richard Thomas Irwin

Approved By: I Vd B
Valdis B ins, 7hesis Advisor

Department of Computer Science

ii

ABSTRACT

In a world where changes in technology occur each minute. the demand for a hard

Real Time embedded computer system deployed on board naval ships not equipped with

Naval Tactical Data System increases. As the demand increases, an important fact looms,

a new approach to software development and system design is essential. The approach used

in our research started with the requirement specifying use of Ada as the design language

with UNIX as the operating system, and selection of the commercial workstation rugged

cnough to withstand shipboard requirements. '[he system requires standard power with no

special interface equipment for adaptation to sh[ipboard application. Specific benefits

include ease of maintenance and expansion of ongoing processes and applications,

allowing the system to grow as the need grows.

This study provides a detailed set of requirements, functional specifications, designs.

and a prototype implementation of the Integration System for such a system. The approach

taken is to implement the basic features of a Combat Direction System (CDS) on a

commercially available microprocessor workstation. This Integration System for the Low

Cost Combat Direction System meets all the requirements specified by the Naval Sea

Systems Command. The code provides the basic elements and is designed for integration

of a database, a user interface, and the ships sensors necessary to provide essential data to

operate the system.
Accesion For
NTIS CRA&
DTIC TAB E)
U:,annouoced Li
Justification

A By
.iiit. ibL:tio I

to~ iii'y rxde!

Di:;t S~

THESIS DISCLAIMER

Appropriate credit is given for names used which are trademarks of various

corporations.

ADA is a registered trademark of the United States Government, ADA Joint

Program Office.

LMS 11 is a registered trademark of LOGICON.

SUN is a registered trademark of Sun Microsystems.

UNIX is a registered trademark of AT&T.

The views expressed in this thesis are those of the authors and do not reflect the

official policy or position of the Department of Defense or the United States Government.

Iv

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. Historical background of the LCCDS ... 4

B. Project organization and goals ... 5

C. Software engineering approach ... 8

I. INTEGRATION SYSTEM RESEARCH ANALYSIS 12

A. Requirements for LCCDS .. 12

B. Low Cost Combat Direction System context diagram 15

C. Requirements for the integration system ... 16

D. Integration system context diagram .. 21

E. Integration system st-ucture diagram ... 22

F . E v e n t list ... 2 3

II. DESIGN OF THE INTEGRATION SYSTEM 26

A. Interface specification for the integration system 26

B .Statem ent of purpose .. 26

C . C onstraints 27

D. The integration system ... 28

E. The object oriented database management system 32

F. The link 1I receive only system .. 36

v

IV. INTEGRATION SYSTEM/OODBMS ARCHITECTURAL
DESIGN AN IMP EM N ATO 38

A. Integration system model... 38

1. List of Integration System packages ... 40

2.Abstract Data Types ... 42

a. TRA CK ... 42

b. FILTER .. 46

c. TRA C&DA TABA SE... 48

d. GLOBALPOSITION... 49

e. LINK-YPE .. 49

f. ABSOLUTE-JIME... 50

g. VECTORJ.. 50

h. VECTOR-3.. 51

3. Task Integration System.. 52

4. Task GPSUpdatejTask... 54

5. Task LinkCycle ... 55

6. Task ProcessLinkTrack ... 55

B. Database model.. 55

C. LinklIlImodel ... 61

V. EVALUATION OF SYSTEM PERFORMANCE................ 64

A. Functional... 64

B. Timing charts for real time constraints testing.................................. 67

vi

VI. CONCLUSIONS .. 72

A . Recom m endations .. 72

B . Evolution of the system .. 73

APPENDIX A GUIDE TO DATA TYPES 75

APPENDIX B INTEGRATION SYSTEM: Ada Code 81

APPENDIX C TRACK PACKAGE: Ada Code 104

APPENDIX D FILTER PACKAGE: Ata Code 154

APPENDIX E CPA PACKAGE: Ada Code 179

APPENDIX F VELOCITY PACKAGE: Ada Code 185

APPENDIX G VECTOR 2 PACKAGE: Ada Code 187

APPENDIX H VECTOR 3 PACKAGE: Ada Code 195

APPENDIX I SPEED PACKAGE: Ada Code 203

APPENDIX J ANGLE PACKAGE: Ada Code 205

APPENDIX K ABSOLUTE TIME PACKAGE: Ada Code 207

APPENDIX L DISTANCE PACKAGE: Ada Code 217

APPENDIX M GLOBAL OBSERVATION PACKAGE: Ada
C ode ... 219

vii

APPENDIX N GLOBAL POSITION PACKAGE: Ada Code 220

APPENDIX 0 RELATIVE OBSERVATION PACKAGE: Ada
C ode ... 230

APPENDIX P RELATIVE POSITION PACKAGE: Ada Code... 231

APPENDIX Q TRACK DATABASE PACKAGE: Ada Code 232

APPENDIX R LINK PACKAGE: Ada Code 239

APPENDIX S SYSTEM STATUS PACKAGE: Ada Code 243

APPENDIX T NAVIGATIONPACKAGE: Ada Code 246

APPENDIX U MSERIESMSGPACKAGE: Ada Code 250

APPENDIX V PROCESSLINKTRACKPACKAGE: Ada
C ode ... 252

APPENDIX W RELATIVETIMEPACKAGE: Ada Code 255

APPENDIX X GPS CONNECTION CONSIDERATIONS 258

LIST OF REFERENCES ... 260

INITIAL DISTRIBUTION LIST ... 264

viii

LIST OF FIGURES

Figure 1: LCCDS CONFIGURATION DIAGRAM 5

Figure 2: NON-NTDS PLATFORM ... 14

Figure 3: LCCDS CONTEXT DIAGRAM ... 15

Figure 4: INTEGRATION SYSTEM CONTEXT DIAGRAM 21

Figure 5: INTEGRATION SYSTEM STRUCTURE DIAGRAM 22

Figure 6: INTEGRATION SYSTEM EVENT LIST 23

Figure 7: NAVIGATION SYSTEM EVENT LIST 24

Figure 8: USER INTERFACE EVENT LIST ... 25

Figure 9: TRACK INPUT BY USER .. 29

Figure 10: TRACK INPUT BY LINK II ... 30

Figure 11: TRACK INPUT BY OWNSHIP SENSOR 30

Figure 12: TRACK FILTER STRUCTURE DIAGRAM 31

Figure 13: DATABASE COMMUNICATIONS DIAGRAM 34

Figure 14: GLOBAL POSITIONING SUBSYSTEM 35

Figure 15: LINK 11 RECEIVE ONLY CONTEXT DIAGRAM 37

Figure 16: PACKAGE DEPENDENCY DIAGRAM LEVEL 0 38

Figure 17: PACKAGE DEPENDENCY DIAGRAM 39

Figure 18: DATABASE STRUCTURES .. 60

Figure 19: DATA STRUCTURE DIAGRAM (LINK 11) 63

Figure 20: TIM ING DIAGRAM 1 ... 68

Figure 21: TIM ING DIAGRAM 2 .. 68

Figure 22: TIM ING DIAGRAM 3 ... 69

Figure 23: TIM ING DIAGRAM 4 .. 69

ix

Figure 24: TIMIN' i DIAGRAM 5 ... 70

Figure 25- T--.JING DIAGRAM 6 ... 70

Figure 26: TIMING DIAGRAM 7../ I1

Figure 27: GPS CONNECT.. 258

ACKNOWLEDGEMENTS

We owe a great debt of gratitude to many people who have inspired and encouraged

us during the process of writing this thesis. Special thanks goes to our families, for their

support and patience. Also, we would like to mention a few individuals for the time, energy,

and advice they gave on behalf of our efforts to formulate our concepts, research, and code

the final product:

Mr. Walter Landaker (NPS, Monterey)

Mr. John Locke (NPS. Monterey)

Mr. Russell H. Whalen (NPS, Monterey)

Mr. Mike Williams (NPS, Monterey)

Mr. Albert Wong (NPS. Monterey)

xi

S

4

S

4

xii

I. INTRODUCTION

The primary goal of the combat direction center is to ensure the individual fighting

capabilities of a single ship. Each ship, however, not only supports the task force, but

enhances it to make the task force a single fighting element capable of overcoming any

enemy. The Navy has met the challenge of the 1990's with the development and

implementation of the AEGIS System. Combatants without this AEGIS capabilities are

being upgraded to meet these standards and capabilities when and where it is possible. In

some cases this is impossible, for instance, most non-combatants at present have no

automated capabilities whatsoever The Navy had the choice of either starting from scratch

and fitting these ships from ground up or developing a new system that was capable of

meeting specific requirements, still holding the cost of development and implementation to

an affordable level. The Navy has projected its desire to develop a system that can be

installed on non combatant ships or to augment existing systems on Combat Direction

System(CDS) equipment ships. This implementation would be accomplished in Ada and

would reflect the specifics of five increments as detailed in Reference 1. The introduction

of the Low Cost Combat Directions System (LCCDS) [Ref. 1, 2] into the field of research

and development launched the need for a new look at the way Combat Direction Systems

function.

The increased complexity of warfare in this decade and the next requires a system

capable of timely response and rapid recovery. The LCCDS, a Real Time System, will meet

this challenge. Receiving data from a number of sensors, the system will process raw data

into formatted information which is both displayed and stored in the database for future

recovery and use. Utilizing the Global Positioning System (GPS) the LCCDS will

continuously monitor and update ownship position. Receive only link 11 provides a tactical

picture of the ship's environment. Equally significant is the user interface, which provides

a variety of inputs from the operator and creating a well balanced, functional, and

informative system capable of handling the most critical situation.

The LCCDS system will be implemented on a commercially available

microprocessor-based workstation. Selection of a microprocessor is relatively straight

forward.

1. The system must meet the NAVSEA requirements for shipboard use.

2. It must be capable of handling our software requirements.

The Sun Microsystems SPARCstation 2 will provide the capabilities required for the

shipboard and real time environment of the LCCDS. The 4.2 BSD UNIX operating system

has been suggested [Ref. 3] and meets the requirements necessary to manage the Verdix

Ada software development system. Verdix Ada will be the implementation language for the

Low Cost Combat Direction Software System. The integration must accomplish an

interface between existing shipboard navigation sensors, link 11, and the object oriented

database management system. These interface points with navigation and link 11 are not

interactive, and allow the integration system only to receive data. The user interface will

receive data from the integration system while the database will support both retrieval and

storage of data via the integration system.

The LCCDS will accomplish all these tasks plus several additional services in just

seconds vice minutes and with a much greater accuracy and reliability than manual

methods. This capability is made possible by the careful selection of a powerful,

inexpensive microprocessor workstation. One of the projected users of the LCCDS is on

board ships without Naval Tactical Data System(NTDS), where at present handling of

combat support is accomplished manually, using only maneuvering board and status boards

kept updated by individual watch standers. The addition of the LCCDS to one of these

platforms would leave the Commanding Officer and his watch standers free to accomplish

their mission in a more accurate, safe, and expedient manner.

.... II II2

The integration system is a vital element(module) of the Low Cost Combat Direction

System(LCCDS) project which is sponsored by Naval Sea Systems Command(NAVSEA).

The LCCDS project is currently divided into three major research and development areas.

1. The integration system, whose primary function is confining and filtering

information from several sources, including ownship sensors, Global Positioning System

and receive only link 11. To monitor this information and detect impending significant

events, such as closest point approach of other vessels, shoals, aircraft fly over, and

navigation hazards. To provide, to the user, a means of continuous access to necessary

navigation data, such as ownship fix information, position of intended movement, and

waypoint locations. To provide an archival record of the available tactical information for

both immediate and historical use.

2. The user interface module, which provides the user with onscreen visual elements

to provide tactical information in an effective form and enables the user to manage the

LCCDS. The user interface receives track information, and environmental information

requested from the integration system.

3. The navigation system of the LCCDS, which will provide ownship navigation and

maneuvering data.

The objective of this thesis is to describe the research and development of the

integration system for the LCCDS. In conjunction with the development, a design and

implementation phase for the integration system as a part of the LCCDS is discussed. A

prototype of the integration system with full details on integrating the user interface, the

navigation system, and an object oriented database is implemented in Ada. The integration

system meets all the requirements of a real time systems as required in the design

specifications [Ref. 1].

3

A. HISTORICAL BACKGROUND OF THE LCCDS

The traditional or conceptual meaning of a ship's combat system is typically the men

and equipment which provide the ship with its offense and defense capabilities. However,

some subsystems such as communication and navigation are not in the spotlight as often as

the weapons system. Both subsystems accomplish their mission in a routine manner and

unless disabled or inoperative are forgotten or de-emphasized when combat systems are

discussed. These systems, which provide the eyes and ears for the ship, play an equally

important role in the ship's overall combat system. It is the composite of the ship's elements

and personnel processing either manual or automated information and providing support to

the overall task/mission of the platform that is important. During the late 1950's and since

the Naval Tactical Data System (NTDS) has played the role of tactical data integration.

Since its evolution out of a need for faster and more accurate information NTDS has been

plagued with restrictions and hang-ups. As technology increased, the need to improve the

system increased, yet many of the outdated systems were not replaced, and heavy

requirements for manual intervention and control continued to slow and restrict the system.

Uncoordinated changes in the interfacing system and weapons systems cause a make shift

and continuous catch up mode.

Today we have several different generations of these modified/improved systems in

the fleet [Ref. 4]. Ongoing study and thirty years of experience has caused the development

and deployment of the Combat Direction System which is not totally separated from, but

has substantial increases in capabilities over the NTDS. The role of the Combat Direction

System is composed as follows [Ref. 5].

1. An automated Database Management System capable of managing tactically

significant tracks.

4

2. A combination of necessary element to form a combat system whose primary

purpose is to support the combat direction center.

B. PROJECT ORGANIZATION AND GOALS

The Low Cost Combat Direction System research and development is under the

supervision of the Naval Sea Systems Command. Research is ongoing at the Naval Post

Graduate School, Monterey, CA., Naval Ocean Systems Command, San Diego, CA., and

Massachusetts Institute of Technology, Cambridge, MA.

Radio[till .Comm

G lobal Positioning System Link 11

Ships

Sensors

Mouse
SPARC Station 2

Figure 1 : LCCDS CONFIGURATION DIAGRAM

5

The LCCDS project as shown in Figure 1, is divided into three basic areas of

development:

1. The hardware evaluation and procurement.

2. The development of the software packages.

3. Testing and evaluation for Real Time performance

The integration system Project, an element in areas 2 and 3 of the LCCDS, is divided

into four major areas of research and development.

1. A system capable of providing an interface with the user, developing an interactive

communication between user and system.

2. A system capable of interfacing with the navigation system and providing ownship

navigation data.

3. A system capable of interfacing with Link 11 receive only and providing for display

network track data.

4. A system capable of data storage and retrieval utilizing data received from sensor

interfaces, and direct input from the user.

The project sponsor goals for the LCCDS integration system are as follows:

1. Locate, evaluate, and procure the hardware necessary to meet the shipboard

requirements.

2. Use Ada as the implementation language.

3. Integrate an object-oriented Database Management System.

4. Integrate a manual tracking and identification capability.

5. Integrate a receive only link 11 capability.

6. Integrate an on ship navigation and maneuvering capability, along with display of

shore line maps.

7. Integrate an autotracking capability [Enclosure 1, Ref. 1]

8. Test, evaluate, and employ the system.

6

The detailed initial problem statement can be defined in terms of a high level LCCDS

program description. Develop the prototype of a Low Cost Combat Direction SoftWare

System (LCCDSWS) for a Low Cost Combat Direction System (LCCDS) that implements

the basic features of Combat Direction System "Model 5"on a commercially available

microprocessor based workstation [Ref. 1,2,3]. This is to be accomplished in respect to the

five increments as outlined in Enclosure 1 Reference 1. Based on these guidelines this

phase of the research must then start at the beginning, laying into place each part of the

puzzle, with a focus on ensuring that no piece will place a constraint on any other piece. In

fact, our goal is that each piece will enhance all the remaining pieces. To start, we had to

select a system and the software environment for the system. The next steps are to define

the requirements for the integration system, write the functional specifications linking the

user interface and navigation modules, then implement the above in Ada.

In order for the integration system to meet these requirements, specific goal

definitions for the integration system have been established.

Goal 1. The integration system must provide a track database system, which is capable

of accessing and updating track information in RealTime.

Goal 2. The integration system must be able to parse incoming Global Positioning

System(GPS) data and extract track/ownship location data in RealTime.

Goal 3. The integration system must be able to parse incoming link 11 messages and

extract track data in RealTime.

Goal 4. The integration system must be able to parse incoming sensor related

messages and extract track data in RealTime.

Goal 5. The integration system must be able to provide the user with relevant tactical

data external to the platform, for screen display.

Goal 6. The integration system must be able to provide the user with the ability to

customize and organize data to meet the specific needs of the individual platform.

7

Goal 7. The integration system must be able to provide the user with the ability to limit

the number of tracks and/or elements for display. Any or all of this data must be

available for retrieval and display. The user will by means of a filter package

communicate to the integration system what is to be displayed.

Goal 8. The integration system must be able to provide the user with the ability to

store, manage, and display geographical regions, paths, and waypoints to meet the

specific needs of the user.

Goal 9. The integration system must be able to provide the user with ownship data to

include closest point of approach(CPA) time, bearing, and range. CPA data provided

may be between any track and ownship or between any two tracks, and must be in

RealTime.

LT Bolick focused on requirements analysis, system specifications and the overall

system design constraints. LT Irwin concentrated on the development of the software

components. Both contributed to the system architectural analysis, software development,

implementation and design.

C. SOFTWARE ENGINEERING APPROACH.

The software development process has been defined by several different and capable

authorities as having different and varied meanings. Yet all seen to agree on some specific

points. The first and most overwhelming point is that when starting a project, the specific

requirements must first be defined, researched and redefined. The second point is, that a set

of specifications must be developed and a design architecture presented before proceeding

with development of the project. Following these well established guidelines [Ref. 7]the

model for the LCCDS integration system was developed.

1. Requirements analysis [Ref. 3].

2. Functional specifications.

8

3. Architeci.-:al design.

4. Implementation.

5. Testing and Evaluation.

The first state in the LCCDS design, the requirements analysis, has been accomplished

by the team of Seveney and Steinberg [Ref. 3]. It is our intention, however, to refine these

broad requirements to more specific ones directly related to the integration system. At this

point we focus on the initial problem statement: The thrust of this research is to provide

detailed requirement analysis for the software portion of the LCCDS. We refer to this as

the Low Cost Combat Direction Software System (LCCDSWS).

The Department of Defense(DOD) and Navy have taken great care in the development

of specific guidelines for the design and implementation of software to be used by DOD.

Directives to be considered in the integration system software require effort to be placed in:

1. Accomplishing the task (completion of the integration system).

2. Completion in a timely manner.

3. Completion at no significant additional cost to sponsor.

4. Producing a top quality product.

Using the spiral model of software development the following sequence of events have

been established for the LCCDS integration system design, review, and acceptance.

1. Review and evaluation of requirements specified by the sponsor(NAVSEA).

2. Review and evaluation of requirements document (Masters Thesis by Seveney and

Steinberg) to determine if there exist conflicts with the NAVSEA requirements.

3. Requirements Analysis Review(RAR) and consistent needs identified.

4. Needs analysis and new needs identified.

5. Completion of specifications with a review and evaluation of requirements and any

new needs are identified.

6. Functionality review for first design.

9

7. Design review and reevaluation of needs and requirements. If necessary, apply

changes to design.

8. Design accomplished with testing in progress. Review for requirements and needs

by sponsor. Changes due to requirements and needs identified are applied at this time.

Bugs are removed from software. Complete code review and code documentation.

Module testing accomplished.

9. Design complete and ongoing testing and evaluation standards. Implementation of

a working prototype. Complete system testing with independent quality assurance

verification.

10. Delivery to sponsor, and ongoing maintenance and upgrade. (debugging in

progress).

Research and design of the integration system conforms with the following DOD and

Navy directives.

1. Department of Defense Military Standard 2167-A Defense System Softvyare

Development [Ref. 25].

2. Department of Defense Military Standard 2168 Defense System Software Quality

Program [Ref. 26].

3. American National Standard Institute Military Standard 1815A-1983 Reference

Manual for the At, x Programming Language [Ref. 27].

4. DOD-STD_480, Configuration ControlEngineering changes, Deviations, and

waiver [Ref. 28].

5. MIL-STD-483,

6. MIL-STD-490, Specification Practices [Ref. 30].

7. MIL-STD-1388, Logistic Support Analysis

The following Data Item Description(DID):

1. DI-MCCR-80012, Software Design Document

10

2. DI-MCCR-80014, Software Test Plan

3. DI-MCCR-80017, Software Test Report

4. DI-MCCR-80025A, Software Requirements Specification

5. DI-MCCR-80026, Interface Requirements Specification

Data Item Description, DI-MCCR-80025A, Software Requirements Specification,

specifies the engineering and qualification requirements for a computer software

configuration item (CSCI). As the basis for the design, format, data generation, and formal

testing of this software project, our team of designers, used the Software Requirements

Specification noted above.

11

II. INTEGRATION SYSTEM RESEARCH ANALYSIS

A. REQUIREMENTS FOR LCCDS.

The initial problem statement can best be stated by paraphrasing the Enclosure 1 to

Reference 1, "Statement of work for Low Cost Combat Direction System (LCCDS)"

which outlines the five increments that the LCCDS project is to be divided.

In increment one:

1. A computer system is to be selected

2. Design and develop an object-oriented Database Management System.

3. Design and develop a display/graphics, which provides the user with his own

customized screen format allowing interactive operations with the system.

4. Display tracks and ownership data.

5. General response time to user "should be no greater that one half second".

In increment two:

1. Integrate manual tracking and track identification capability.

2. System maintains ownership track.

3. Use standard display symbols as list in Reference 1.

4. Display and assign speed and bearing as both values and leaders, with four second

updates on all elements of the each track in the database.

5. Allow for additional/amplifying track information to be displayed at the users

request.

6. Allow the user to change track identification number, category, and identity.

7. Allow for a unlimited number of tracks in the system.

12

In increment three:

1. Integrate receve only link 11.

In increment four:

1. Provide ownship data. Navigation and maneuvering data from ownership sensors.

2. Provide up to six steaming routes.

3. Provide up to 50 waypoints per steaming routes.

4. Provide closest point approach data.

a. Provide ownship CPA with any track.

b. Provide CPA between any two tracks.

c. Provide diplay of CPA bearing lines on position display.

In increment five:

1. Integrate an organic auto tracking capability using (TBD) radar interface.

Issues in achieving common operations for Combat Direction Systems was addressed

in accordance with the guidelines of Reference 2. The specific concerns faced by this

research study and the issue we considered most important is safeguarding consistency,

while preserving independent configurations for each user. A list of considerations by

which to achieve this concerns are listed below.

1. What track characteristics should be specified in statements. Should the track follow

the basic NTDS format.

2. What actions should the system take in the event of malfunction or error detected

and what actions are left to the user.

13

3. Which of the common display and control formats of the model 5 Combat Direction

System should be used.

4. What safeguards should be built into the system, more specifically the integration

system, to insure consistent operations.

5. What accuracy and precision of track data is required.

Communications between the integration system and the elements of the LCCDS is a

critical link in considering development of a RealTime system. There cannot be any delay

in the system functions due to restrictions in the communications media. Therefore care and

time was used in the selection and implementation of the communication software interface

between the three elements user interface, Link 11, navigation interface, and the integration

system as seen in Figure 2.

It is important to keep these requirements in mind, not allowing them to drive the

research, but to provide some guidelines and restrictive boundaries within which to

work.These questions and more are addressed and answered in this research.

LINK 11 GPS

INPUT DATA IS RECIEVE ONLY

Figure 2: NON-NTDS PLATFORM

14

B. LOW COST COMBAT DIRECTION SYSTEM CONTEXT DIAGRAM:

The integration system is divided into four major areas of research and development

as seen in Figure 3. A complete discussion of each of these areas will be given later in this

document.

lUser
Interface J

Link 11 Integration Navigation
Interface System System

Ships
Sensors

Figure 3: LCCDS CONTEXT DIAGRAM

15

C. REQUIREMENTS FOR THE INTEGRATION SYSTEM

The requirements for the integration system appeared straightforward at first, but on

closer examination we soon discovered that each of the more general requirements as

outlined by Reference 1, Enclosurel must be expanded to meet our specific needs. Listed

below are the general requirements:

1. Use Ada as the implementation language.

2. Integrate an object-oriented Database Management System.

3. Integrate a manual tracking and identification capability.

4. Integrate a receive only link 11 capability.

5. Integrate an on ship navigation and maneuvering capability, along with display of

shoreline maps.

6. Integrate an autotracking capability [Enclosure 1 of Ref. 1].

Expansion of these requirements is interlocked with the general design of the complete

LCCDS. We began by looking at the qualities of Ada as the implementation language.

Because of the Real-Time requirement for the LCCDS, parallel processing is a must.

The basic design feature of the Ada language is centered around the use of "Oojects"

for program design. An object is a data structure consisting of a unique identifier and an

associated set of functions and procedures that operate on the object. This meaning of the

term object may not be universally agreed upon, but it is our working definition, and will

be used throughout the design of the integration system. These operators are the only

allowed means of manipulating the object. A number of advantages follow from this design

approach. Objects and their associated functions and procedures form a natural boundary

along which to subdivide the integration system. Because the structure of a data type is

16

hidden from all but its associated operators, changes to the structure have a limited impact

on the overall system. This feature greatly simplifies program modification and

maintenance.

Ada provides a construct called a "Package" that allows the programmer to

encapsulate objects and their associated functions and procedures. In addition, it allows for

4"private" types and "limited" private types that further restrict encapsulation so that objects

of these types, while visible to the program parts, can only be manipulated by the functions

and procedures it has referenced. A combination of these features permit the programmer

to hide data structure implementation and create "abstract" data types. The use of the

attribute private means that the programmer cannot use any knowledge of how the data type

is to be implemented in the integration system. This allows for user changes in the basic

features of the LCCDS but maintaining the integrity of the integration system. The

integration system will take full advantage of each of these features.

Ada provides a "Task" construct, which is a feature that allows the programmer to

divide a program into logically concurrent operations with synchronization between each

or all of the operations. In addition to forming the basis for Real-Time operations, Tasks

also provide a means of increasing processing efficiency in a parallel processor

environment like the integration system for the LCCDS. Like packages, the task has a

specification part and a body, however, the specification part is used solely to declare the

synchronization point or entry point to the task. The entry point is used to indicate where

the message is received or transmitted by the task.

The discussion of Ada packages and tasks would not be complete without an

explanation of the Ada features "with" and "use". The with and use clauses are the

mechanism by which the integration system environment is made available to all the

elements contained within. The with clause tells the compiler that the programmer intends

to use data types, procedures, and functions defined somewhere in the package specified.

17

The use clause tells the compiler that the programmer desires to reference the data types,

procedures, and functions located somewhere in the package specified.

The use of data abstraction provides for the integration system several advantages:

1. A clearer conceptualizing of the problem or procedure being written and

incorporated into the integration system.

2. More reliable data security.

3. A more reliable means of avoiding side effects.

4. Easier modification of the implementation as changes or updates occur.

Making use of or reuse of algorithms that have been implemented previously is a

major advantage of program abstraction. Another advantage of this programming style is

that it can be modeled more readily using mathematical techniques, thus opening up greater

possibilities for correctness proof methods. Correctness proof is a major concern of the

integration system since lives will depend on its effectiveness and plecision.

The Ada language provides high level facilities for expressing concurrent algorithms

parallel processes. These facilities are tasks, and along with subprograms, packages, and

generic units, they constitute the physical unit make up of which our programs will be

composed. Synchronization between any two of these task occurs when the task issuing an

ENTRY call and the task ACCEPTING an entry call establish a rendezvous. The two tasks

communicate with each other in both directions during this rendezvous.

Several task can rendezvous with each other, in groups of two or more, at any instant.

If several tasks need to rendezvous with the same task, then these entry calls are placed in

a queue associated with the entry and accepted in first in-first out order. By this method

careful control of the tasks and their order of execution can be artificially established. By

this method also we can set a system of priorities without using the Ada task specification

"priority".

18

Deadlock is a concern: NO DEADLOCKS is a requirement for the integration system.

Therefore it is absolutely essential to build deadlock prevention into the system. This idea

is one that draws a large amount of concern and articles written on the subject. There are

two basic fields of belief in the area, one is that deadlocks cannot be prevented and must be

handled when they occur. The other is that deadlocks can be prevented and with careful

planning and design, and that prevention is preferable to control. In our case, if a task(one)

makes an entry call to a task(two) that is in the entry call queue of a task(three), which is in

the entry queue of task(one), then deadlock occurs. The design of the system is such that

this situation does not occur. Clearly, we have chosen to handle deadlocks by prevention,

but have also considered controls and exceptions if the situation arises. Other methods and

controls will be discussed later in the document. Research on formal methods and tools to

ensure that designs are free from deadlocks is in progress [Ref. 24].

As a subunit within the integration system the database has only one type of object,

Track. There does exist, however, several classes of the object. The database features space

for unlimited instances of each class, limited only by the amount of swap space available

to the workstation.

The integration system must provide a function by which the user can manually enter

a track. Incorporated in this task will be provisions allowing the user to change certain

attributes of the Track but, restricting these changes to Track identification number and

other amplifying information.

The integration system must receive from the Global Positioning System ownship fix

(Geographic-Position) data which consist of a Latitude, Longitude, and a Greenwich Mean

Time(GMT). A GlobalPosition is the Latitude converted to an angle from the equator and

the Longitude converted to an azimuth from the Greenwich Meridian. This data string must

be translated and formatted into system data format. The ownship system data is to be

stored in the database as track zero and used to define the ownship track. Ownship track is

19

used by the system to compute course, speed, closest point of approach, range, and bearing

information on a user designated track.

The integration system must receive Link 11 data transmitted via the standard fleet

UHFIHF communication channels. The data as received is a cryptogram and not usable by

the integration system, therefore the data must be deciphered and translated into system

format. To accomplish this translation we propose to use a system already being used in the

fleet. This translation is a major project in itself and not a primary requirement for the

prototype version of the LCCDS. The system proposed to translate the Link message input

to M-series messages is the Link Monitoring System (LMS 1 Ir) which receives the Link

11 data directly from the communications link and with a cryptographic unit (KG-40) in-

line, translate the data into English M series messages which can be sent to the link 11

processor inside the integration system. The link 11 processor translates the M series

messages to a string of system formatted characters representing a relative position from

DLRP of each contact. The integration system will then store each of these contacts in the

database as a track.

A subset of these tracks determined by a filtering process designated by the user, can

then be graphically displayed. The filter system is a collection of individual filters that can

be combined together by utilizing the mathematical expressions and and or. This

combination filter acts as a single filter and forms a TACPLOT, which is used by the

integration system to send to the user for graphic display those tracks and situations

requested. Filters are discussed in more detail later in this document. The shoreline maps

and auto tracking capability listed in the NAVSEA requirements are not a part of this

research project.

20

D. INTEGRATION SYSTEM CONTEXT DIAGRAM

Figure 4 is the context diagram of the integration system. The diagram is used to

illustrate the direction and paths of communication between the various elements of the

integration system, the user interface, the link handler, and the navigation handler.

nay process link
handle link 11 handler

(/update ..

database~active database !

illf" USER save
tacplot D, INTRFC da/ta

historical

database

process
qeyre t r ie v e

history

Figure 4: INTEGRATION SYSTEM CONTEXT DIAGRAM

21

E. INTEGRATION SYSTEM STRUCTURE DIAGRAM

Figure 5 is the integration system structure diagram illustrating the individual sections

or functions the integration system is naturally divided. Each section may contain several

individual and unique functions or task which together accomplish the desired mission of

that section.

INTEGRATION
SYSTEM

TAKHISTORICAL CPA
FILTER DATABASE PROCESSOR

TRACK LINK I 1 NAVIGATION
DATA

HANDLER HANDLER
HANDLER

Figure 5: INTEGRATION SYSTEM STRUCTURE DIAGRAM

22

F. EVENT LIST:

A list of external events that cause a response by the integration system is shown in

Figure 6.

1.Simulus: Receive ownship data from the Navigation interface.

Response: Interpret and store ownship position(fix) in database.

2. Stimulus: Receive track data from Link 11 NTDS.

Response: Interpret and store NTDS tracks in database.

3. Stimulus: Receive filter from the user.

Response : Provide for graphic display of tracks specified by filter.

4. Receive new track data from the user.

Response: Interpret and store in database.

S. Stimulus: Receive a request to provide CPA data from the user.

Response: Interpret and provide forgraphic display CPA data.

6. Stimulus: Receive track information request from the user.

Response: Provide for the user track identification number and category of

track specified.

7. Stimulus: Receive flag from navigation interface indicating loss

of sensor signal.

Response: Provide user with alarm specifying loss of sensor signal.

Figure 6: INTEGRATION SYSTEM EVENT LIST

23

List of events which will occur in the navigation system as a response to the action of

one or more sensors are found in Figure 7.

1. Stimulus: Receive ownship fix data from the Global

Positioning System.

Response: Translate GPS data to an Ada string of characters and

transmit via communication link and RS 232 communication port

to the integration system.

2. Stimulus: Receive ownship course from ships gyroscope.

Response: Transmit to integration system.

3. Stimulus: Receive water depth under the keel from

ships fathometer.

Response: Transmit to integration system.

4. Stimulus: Receive ownship speed made good through the water

from ships pitsword.

Response: Transmit to the integration system.

5. Stimulus: Receive contact information from the ships radar.

Response: Translate data to an Ada string of characters

representing a global position and transmit to the integration

system.
N M

Figure 7: NAVIGATION SYSTEM EVENT LIST

24

List of events that originate from the user or integration system and trigger a response

from the user interface are found in Figure 8.

1. Stimulus: Receive updated tacplot from integration system.

Response: Provide graphic display of tracks specified by filter.

2. Stimulus: Receive update of track category and amplifying data

from integration system.

Response: Provide graphic display of track category and amplifying

data.

3. Stimulus: Receive track data from the integration system.

Response: Provide corrections to local tracks.

4. Stimulus: Receive CPA information from the integration system

on any specified track and ownship track.

Response: Provide graphic display of CPA data.

5. Stimulus: Receive CPA information from the integration system

on any two specified tracks other than ownship.

Response: Provide graphic display of CPA data.

6. Stimulus: Receive initialize the system from integration.

Response: User enters desired system setup.

Figure 8: USER INTERFACE EVENT LIST

25

III. DESIGN OF THE INTEGRATION SYSTEM.

A. INTERFACE SPECIFICATION FOR THE INTEGRATION SYSTEM

One approach to the specification of concurrent programs is called behavioral. It starts

by describing the possible events and actions, series of events and/or series of responses, in

which part or all of a program may engage. The first big step was to take these descriptions

and translate them into executable specifications. With this partial tool for designing

concurrent programs, the construction of the integration system begin. At each level of the

integration system we conducted a comparison of the different implementation methods

available. Particularly noteworthy is that we found it readily easy to translate these

implementation ideas into Ada code. More specifically, by using rendezvous and

nondeterministic "Select" statements of Ada Tasking ensure the parallel processing we

seek.

The integration system shall provide detailed information on all aspects of the tactical

situation and system control, operating parameters and status. This information is obtained

from the Tactical Database which shall be an object-oriented database management system

written in Ada. The system will provide a flexible, easy to use, window based user

interface. A navigation interface will provide the system with ownship information and

track data, as well as navigation data.

B. STATEMENT OF PURPOSE

The purpose of the integration system of the LCCDSWS is to integrate the user

interface, the navigation system, the receive-only link interface 11 and the object- oriented

database management system. The system is to maintain and display a real time picture of

the tactical environment for the specific platform on which the system is located.

26

The results of this integration will store in the database all tracks, includ.ng the

ownship track which includes ownship Navigation and Maneuvering data. The integration

system will use filters provided by the user to determine the contents of the tacplot which

is sent to the user interface for display.

C. CONSTRAINTS

Software development for Department of Defense must adhere to Department of

Defense Military Standard 2167-A Defense System Software Development, 29 February

1988[Ref. 25]. Department of Defense Military Standard 2168 Defense System Software

Quality Program, 29 February 1988[Ref. 26], and American National Standard Institute

Military Standard 1815A- 1983 Reference Manual for the Ada Programming Language, 17

February 1983[Ref. 27].

Specified in the Requirement Analysis [Ref. 3] Seveney and Steinberg thesis, are the

LCCDSWS, prototype constraints. These constraints will be used as a guideline for the

constraints definitions of the integration system. The performance constraints may be

evaluated at several different levels and in several different contexts but we will focus on a

limited view from the standpoint of the integration system only.

1. Resource constraints: The basic resources are available in the LCCDS team and in

the faculty and staff of the Naval Postgraduate School.

2. Implementation constraints: Hardware available is the Suns Microsystems

Sparcstation 2 machine. The system is configured in a stand-alone unit configuration V';th

four each RS-232 communication ports used for interface with the Link. GPS, and ships

sensors. Operating System as defined in reference 2 is derived from the UC Berkely

Version 4.2 BSD and Bell Lab's UNIX system version 32v [Ref. 32].

27

In accordance with Reference 1 and The Department of Defense policy the

implementation language for the system will be Ada. In this particular application Verdix

Ada 6.0 is used.

3. Performance constraints: Performance for the LCCDS workstation include

RealTime data processing and display. In this application system performance has an

upper bound: Reference 1, Enclosure I defines RealTime to mean that response time must

be less than or equal to four seconds.

D. THE INTEGRATION SYSTEM

The design of the LCCDS is not that of an embedded system, however, the integration

system contains functions and procedures not visible to the user. These functions and

procedures, in some cases found in Ada Tasks, perform a vital role in the overall systems

response and behavior. The design of the integration system as a RealTime embedded

system requires the use of parallel processing.

In order to meet the time constraints specified in Reference 1, special attention

must be given to the order and magnitude of the Ada programs and packages which make

up the integration system. The integration system is the main processing element of the

LCCDS. Other elements such as the navigation system, Link 11, ships sensors have a one

way communication link and only provide data to the integration system. The user

interface element has a two way communication link with the Integration System, but is

used to display, retrieve, and add to the data already in the system. The integration system

stores the data received from these sources in the active database (located in RAM). The

data is stored in a data structure called Track, which is defined in the database section of

this document.

28

The system as configured can retrieve the data to perform various operations and

functions on Track as required by the user or predefined by the system. The requirements

for the system, list a number of these operations and functions [Ref. 1, 2].

1. Provide a filtered set of tracks to the user interface for graphic display.

2. Provide the user with the ability to select the category and type of track to be

displayed.

3. Provide the user with closest point of approach data between any pair of tracks

selected by the user.

4. Track position to be dead reckoned using current track bearing and speed.

5. Allow the user to make changes to tracks in the database

6. Provide the user with safe maneuvering data.

The integration system receives track data from three sources:

1. Manual input from the user as illustrated in Figure 9.

USER.. TRACK

INTERFACE track data PACKAGE

Integration System

DATABASE I

Figure 9: TRACK INPUT BY USER

29

2. Via communications interface with link 11 as illustrated in Figure 10.

~Track
... Package,

............. NTDS Link 11

link 11 handier
track data Database

Figure 10: TRACK INPUT BY LINK 11

3. Via communications interface with the ships sensors(radar) as illustrated in Figure

11.

SHIPSTrack

Senssor
S sensor Sno

track data hade

Database]

Figure I : TRACK INPUT BY OWNSHIP SENSOR

30

The prime objective of the LCCDS is to provide a clear and concise tactical picture for

the ship commander. This tactical picture must be presented in a manner which accurately

represents the tactical problem (situation) comprehensibly to the user. The integration

system allows the user freedom to concentrate on the situation via user predefined filters.

Regardless of the mission or tactical situation, a ships sensors provide only raw data. Even

when this data is graphically displayed relative to ownship, it is still only useful when the

user applies intelligence to the overall situation.

A simplified view on the process of collecting, filtering, and displaying tactically

significant data in a Real Time environment is in Figure 12.

TACPLOT]

j USER

FILTER

Figure 12: TRACK FILTER STRUCTURE DIAGRAM

31

The integration system provides navigation, link 11, and user interface inputs to the

database. The input is not direct, but through the integration system, allowing for control

of the data stored in the database. A specific package is written inside the integration system

to interface with the navigation system. The navigation system package provides a facility

for converting GPS data into an ownship track. The link 11 package processes the link 11

tracks and after filtering the track base, stores all accepted tracks in the database. Local or

user generated tracks is part of the track package.

The integration system consist of a main Ada task that makes entry calls to the various

tasks, functions, and procedures that collectively makeup the integration system. The

simplified function or purpose of the integration system is to receive data from various

sources and translate/parse this raw data input into data the userinterface can use for

graphic display and store a duplicate set of data in the database.

The user has available a set of options by which to manipulate the system filter

algorithm. The user may select a single atomic filter or a series of atomic filters and by

applying the mathematical and and or statements combine these filters to create a single

and filter. This single and filter provides a template which the integration system uses to

retrieve only tracks that meet the specific properties of the Tacplot. The Tacplot filed with

the tracks that meet the filter are sent to the user interface for graphic display of the tactical

situation as illustrated in Figure 12. How the data is displayed is not a consideration of the

integration system.

E. THE OBJECT ORIENTED DATABASE MANAGEMENT SYSTEM

The requirements for the LCCDS specify design and implementation of an object-

oriented database system. The purpose of this database is to manage the tactical information

store of the LCCDS. The information is used to display a tactical picture of a ship's local

environment and provide pertinent answers to queries defined by the user. The data

32

structure and methods of the database, as well as the supporting software components are

to be implemented in Ada. The features included in our database are based on the following

considerations:

1. Real-Time performance: Safety and Maneuverability of the ship, as well as tactical

decision-making demands RealTime performance.

2. Maintainability: Using an object-oriented approach to the database ensures the

methods and procedures defined on an object will not be affected if the data structure

representing the object requires alteration.

3. Transaction concurrency: In order to maintain RealTime performance, parallel

execution of separate tasks must occur. The parallel processing of these tasks,

however, introduces potential of deadlock situations that should be prevented.

The design of our database responds to the above considerations utilizing:

1. Variant Ada records [Ref. 33] to define a single common object class. The main data

structure holding the instances of the defined objects allows for rapid retrieval and ease

of updating. Locking protocols prohibits conflicting transactions on the database.

2. Ada tasks to handle the transaction concurrency problem.

We start our explanation of the record structure by defining the catalog, also known as

the database description or schema [Ref. 5, 101. The catalog contains the following

information:

1. The constraints.

2. Usage standards and application programs.

3. Descriptions and user information.

33

Th ytmpoie h srwt h aablt to fin a pcfe rc ih aaae

a Track o ailteredracPackage

Active

Database
Historical HaaXtriDatabase

Figure 13 : DATABASE COMMUNICATIONS DIAGRAM

The system provides the user with the ability to find a specified track in the database,

add a track, alter a track, drop a track, send a track to history, restore an altered track to

database, see Figure 13.

As discussed previously the Global Positioning System (Trimble-4000 S) illustrated

in Figure 14 transmits the current fix data of ownship to the navigation handler via an RS-

232 communication port via an RS-232 communication port. The navigation handler parses

this data and translates it to a LCCDS usable format. The integration system receives from

the navigation handler a string of characters which represent the position of ownship at a

specific time.

34

Figure 14: GLOBAL POSITIONING SYSTEM

The string of characters is parsed and converted into a GlobalObservation for ownship.

Data is received from the GPS at one second intervals. The navigation handler stores each

of these datainputstrings in a buffer ready for the integration system to read. When the

integration system makes a request to read data the navigation handler locks the buffer and

does not allow the GPS to perform its normal one second overwriting of the data in the

buffer with new data.

When the integration system has completed the read function the navigation handler

unlocks the buffer and allows the GPS to overwrite the buffer with the next full string of

data. An interval of every four seconds is required for the integration system to update the

ownship GlobalObservation.

Link 11 tracks are received by the system and converted to the track type. The system

stores the tracks in the database. Filtering of these Link 11 tracks occurs in two stages, first

as the tracks are received and deciphered, the second when the user designed filter is used

to fill the Tacplot for graphic display of tracks.

35

F. THE LINK 11 RECIEVE ONLY SYSTEM

A vital feature in the LCCDS is the ability to receive all contact information reported

by the task force on the NTDS Link 11. The data gathered and displayed from this source

will give the Commanding Officer a clear tactical picture of all elements in the force. The

Link provides a measure of security for ships maneuverability and tactical defense. This

study did not consider a two-way communication link because the value of two-way

communication to a non-combatant ship is unclear. However, data from ownship sensors

could be useful to other combatant ships.

we propose to utilize software and hardware from an outside source to translate the

NTDS Link II data into source code the system can use. The Link 11 interface with the

integration system consists of the link 11 handler designed inside the integration system

and communicating directly with it is the external Link 11 data translator and decoder. The

link handler is an Ada function which breaks a string of characters into the individual parts

of the data type Track and stores the array of parts in a buffer waiting for the integration

system to lock the buffer and read out the data. After reading the contents of the buffer the

integration system unlocks the buffer. The link handler then repeats the process.

Once this translator package is in hand, we can proceed to design an Ada package

capable of parsing the NTDS Link 11 code string, M messages, and breaking them into

there individual elements. Once the indivicual elements are available the system can

convert them into a Track record. A new LCCDS track number is be assigned to each track

with a pointer from the NTDS track number to its associated system track number. The

Track record is be stored in the active database as a track. We limited our work on the link

handler to developing a specification.

36

NTDs
Link I11 system

\rp o ui Handler

Figure 15: LINK 11 RECIEVE ONLY CONTEXT DIAGRAM

The system recommended to decipher and translate the Link 11 data into a string of

correct LCCDS message format characters is the Link Monitoring Set 11 r (LMS 1 Ir)

system as illustrated in Figure 15. The LMS 1 Ir system is a Link 11 receive only Data

Terminal Set which can provide a continuous sting of two each sixteen bit parallel

messages of the Link 11 data. These messages are then passed through the crypto- unit

(KG-40 for LOS - UHF/HF and KG-84 for SATCOM - UHF)) which decodes the messages

to M series messages. Using the format prescribed in OP-SPEC 411.2 these M series

messages can be translated in the system format (English Text) by the integration system

link 11 processor package. Because of the classification (CONFIDENTIAL) of the link 11

material a removable hard drive or tape drive is recommended for secondary memory. At

this point a discussion of the protocol for Link 11 data receipt, MIL-STD-1397 input data,

would be appropriate if this research paper was classified. Because the paper is unclassified

we will leave this discussion to the follow-on research and development of the Link 11

receive only system.

37

IV. INTEGRATION SYSTEM /OODBMS
ARCHITECTUAL DESIGN AND

IMPLEMENTATION

A. INTEGRATION SYSTEM MODEL

The integration system software is designed as a set of Ada packages. This concept

allows for greater versatility and application of the Ada programs and functions developed.

The integration system provides navigation, link 11, and user inputs to the database. The

input is not direct, but through the integration system, allowing for control of the data stored

in the database. A specific package is contained in the integration system to interface with

the navigation system.

A general discussion of the packages and how we applied them to the overall design

concept of the integration system follows Figure 16 which is a package dependency

diagram of the integration system. In Figures 16 and 17 nodes are Ada packages, and the

arrows depict Ada with statements.

USERINTERFACE PROCES SLINK_
PACKAGE TRACK PACKAGE

INTEGRATION_
SYSTEM PACKAGE

NAVIGATION SHIPSENSORS
PACKAGE PACKAGE

Figure 16: PACKAGE DEPENDENCY DIAGRAM LEVEL 0

38

USER TRACKYKG

ISTACPKG POSRONIG SPEK AINLEPKG

Figure17: PAKAGE EPENECYDAGA

39 I

1. LIST OF INTEGRATION SYSTEM PACKAGES:

INTEGRATION SYSTEM PACKAGE: The purpose of the package is to

receive data or information from various sources, translate/parse the raw

data input into integration system formatted data, store the data in the

database as a track, and send the data to the userinterface for graphic

display of the tactical situation. The package also performs time

synchronization functions for external tasks.

" FILTER PACKAGE: The purpose of the package is to represent policies

for choosing which tracks are entered in the database and which are shown
on the graphic display. The policies are defined by the user via the

userinterface.

TRACK PACKAGE: The purpose of the package is creation, deletion, and

modification of tracks in the database.

CPA PACKAGE: The purpose of the package is computation of the closest
point of approach between any two tracks specified by the user.

" VELOCITY PACKAGE: The purpose of the package is to represent the
velocity of a specified track. Velocity is defined as a two dimensional

vector, representing course and speed.

" VECTOR_2 PACKAGE: The purpose of the package is to provide a

means of using two dimension vectors for various applications.

* VECTOR_3 PACKAGE: The purpose of the package is to provide a

means of using three dimension vectors in various applications.

" SPEED PACKAGE: The purpose of the package is to represent speed in

knots or yards per second.

ANGLE PACKAGE: The purpose of the package is to offer a means of

representing an angle in radians or degrees and functions to return attributes

of the angle.

DISTANCE PACKAGE: The purpose of the package is to offer a means

of representing distance in yards or nautical miles.

40

ABSOLUTE TIME PACKAGE: The purpose of the package is to provide

the integration system constant access to system time. Defines the abstract

data type AbsoluteTime and associated functions. System time can be

displayed as Greenwich Mean Time or Local Mean Time depending on user

needs.

RELATIVE TIME PACKAGE: The purpose of the package is to

represent the length of the (interval)between two events.

GLOBAL POSITION PACKAGE: The purpose of the package is to

represent geographical positions on the earth. Input and output in terms of

latitude and longitude are provided. Internally uses an angle from the

equator and an angle from the Greenwich Meridian.

GLOBAL OBSERVATION PACKAGE: The purpose of the package is

to represent a global observation(global_position, velocity, and time) for a

track. The global observation indicates current position of the track.

* RELATIVE POSITION PACKAGE: The purpose of the package is to

compute the bearing and range of a track from a reference track. Bearing is

defined as an angle from true north and range is the distance between the

two tracks.

" RELATIVE OBSERVATION PACKAGE: The purpose of the package

is to define a data type RelativeObservation that stores a RelativePosition

and an ObservationTime.

" TRACK DATABASE PACKAGE: The purpose of the package is to

provide a means to store the tracks in the system. To accomplish this the

package creates a linked list of tracks.

LINK PACKAGE: The package converts M series messages into system

formatted tracks. These tracks are stored in the database as link controlled

tracks.

41

NAVIGATION PACKAGE: The purpose of the package is to keep track

of ownship position via a communication port that accepts global
positioning system data. The received data is translated into integration

system track format and stored in the database as ownship current location.

SYSTEM STATUS PACKAGE: The purpose of the package is to provide

the system with a means to enable or disable the communication link
between the system and the ships sensors. The package provides the
integration system with a means of indicating a up and operating or down

and off status of the ships sensors.

M SERIES MSG PACKAGE: The purpose of the package is to provide a

means of activating a communication port to read in the link M series

messages from the LMS 1 lr and storing the messages in a buffer.

PROCESS LINK TRACKS PACKAGE: The purpose of the package is
to read from the buffer each M series message. Using the LINK package
procedures/functions, each M series message is converted to an integration

system link track. The LINK tracks are processed as integration system

tracks and stored in the database.

2. ABSTRACT DATA TYPES:

a. TRACK

(1) Description: A TRACK represents the observations and descriptions of

a tactically significant contact. The implementation of the TRACK type is given in

Appendix C, p. 103. There are several different kinds of TRACKs; each of which is

identified by its TRACKCATEGORY (see Function TRKCATEGORY). The possible

values of TRACKCATEGORY are:

a. SURFACEPLATFORM: In nautical terms, a surface platform is

defined as any man-made vessel designed to operate on the surface of the water. For a more

detailed definition refer to Reference 2.

42

b. SUBSURFACEPLATFORM: In nautical terms, a subsurface

platform is defined as any man-made vessel designed to operate below the surface of the

water. For a more detailed definition refer to Reference 2.

c. AIRPLATFORM: An air platform is any man-made object designed

to operate above the earth's surface. The platform has an ALTITUDE. For a more detailed

definition refer to Reference 2.

d. UNKNOWN: An unknown TRACKCATEGORY is defined as any

TRACK whose TRACKCATEGORY has not yet been established by the user.

The TRACKCATEGORY of an UNKNOWN TRACK can be changed

via the operation CHANGETRACKCATEGORY.

e. REGION: REGIONs consist of two types, CIRCLE and POLYGON.

A REGION is stored in the database as a TRACK. A CIRCLE contains a center

(GLOBALPOSITION) and a radius (DISTANCE). A POLYGON contains from three to

twenty vertices (GLOBALPOSITIONS) that form the POLYGON. The REGION may be

relative to a GLOBALPOSITION which does not have motion or relative to a TRACK

that has VELOCITY. A REGION may represent an operating area in which the platform

operates or may represent a restricted area in which platform movement is constrained or

forbidden.

f. PATH: A PATH consists of a series of WAYPOINTs

(GLOBALPOSITIONS) and is stored in the database as a TRACK. A time is assigned to

each WAYPOINT and represents a desired time to arrive at the WAYPOINT. The array is

passed to the userinterface for graphic display upon request. PATHs can be used to

represent Path of Intended Movement(PIM) along which the platform travels. A PATH can

be stored in history for later reference.

g. MANINWATER: A GLOBALPOSITION used to mark the

geographic location of a man lost overboard.

h. SPECIALPOINT. A SPECIALPOINT TRACK is defined as a

single object, real or imaginary, man-made or natural, and not otherwise designated as

43

surface platform, subsurface platform, air platform, or unknown. A SPECIALPOINT

TRACK is further defined by its SPECIALPOINTCATEGORY. The possible values of

a SPECIALPOINTCATEGORY are NAVHAZARD, WAYPOINT, or GENERAL.

All SPECIALPOINT TRACKs have, as attributes, VELOCITY, and

(GLOBALPOSITION). A WAYPOINT is generally defined as an imaginary point at a

specific GLOBAL-POSITION with an additional attribute TIMETO that defines

OWNSHIP's expected/desired arrival time to the WAYPOINT. A NAVHAZARD is a

SPECIAL_POINT that represents a physical object whose size and/or location presents a

real hazard to navigation. A GENERAL SPECIALPOINT is a SPECIAL_POINT not

otherwise designated as a WAYPOINT or NAVHAZARD. Its description may be

elaborated in the TRACK's AMPLINFO.

(2) Attributes: The following are attributes of TRACK:

a. Function TRACKIDNUMBER (TRK: TRACK) return

NATURAL;

TRACKs are uniquely identified by their TRACKIDNUMBER.

TRACKID's are unique throughout a mission, to make sure that the historical record is

unambiguous. Every TRACK has a TRACKIDNUMBER regardless of its

TRACKCATEGORY. The TRACKIDNUMBERs are generated by the

TRACKTYPE and are a one up count process (see the variable TRACKID in the private

part of the package TRACKPKG specification. The correspondence between Link

TRACKID's and TRACKIDNUMBER is maintained by the LINKTABLE data

structure in the package LINKPKG.

b. TRACK location:

Function CURRENTPOSITION (TRK: TRACK) return

GLOBALPOSITION;

CURRENTPOSITION returns the GLOBALPOSITION of the

TRACK's dead-reckoned position from the last GLOBALOBSERVATION

44

Function RELATIVEBEARING (REFERENCETRACK,

TARGETTRACK: TRACK) return ANGLE;

Returns the bearing angle from the course of the

REFERENCETRACK to the TARGETTRACK.

Function TRUEBEARING (REFERENCE_TRACK,

TARGETTRACK: TRACK) return ANGLE;

Returns the bearing angle from true north to the TARGETTRACK.

Function MOSTRECENTOBSERVATION (TRK: TRACK) return

ANGLE;

Returns the TRACK's last entered GLOBALOBSERVATION.

c. TRACK motion:

Function TRUEVELOCITY (TRK: TRACK) return VELOCITY;

Returns TRACK's true course and speed relative to the surface of the

earth as calculated in its MOSTRECENTOBSERVATION.

Function TRUECOURSE (TRK: TRACK) return ANGLE;

Returns TRACK's true course calculated in its

MOSTRECENTOBSERVATION.

Function TRUESPEED (TRK: TRACK) return SPEED;

Returns TRACK's true speed calculated in its

MOSTRECENTOBSERVATION.

Function TRACKRELATIVEVELOCITY (REFERENCE_TRACK,

TARGETTRACK: TRACK) return VELOCITY;

Returns TARGETTRACK's relative motion (course and speed)

relative to the given REFERENCETRACK.

Function RELATIVECOURSE(REFERENCETRACK,

TARGETTRACK: TRACK) return ANGLE;

Returns TARGETTRACK's relative course as seen from the reference

TRACK.

45

d. TRACK intelligence information:

Function AMPLINFO (TRK: TRACK) return AMPSTR.VSTRING;

Returns a string of characters that more clearly defines the identification

or mission of the platform represented by the TRACK.

Function TRACKIDENTITY (TRK: TRACK) return

IDENTITYTYPE;

Returns the TRACK's IDENTITYTYPE, which can have the values

UNKNOWN, FRIENDLY, HOSTILE, NEUTRAL.

Function PLATFORMCLASS (TRK: TRACK) return

V_ANDCSTR.VSTRING;

Returns a string of characters that define the class of the contact.

Examples are Cruiser or Aircraft carrier.

Function VESSELNAME (TRK: TRACK) return

V_ANDC_STR.VSTRING;

Returns a string of characters that represent the platforms name. An

example is USS EDSON.

(3) Creation Operations A TRACK object is created by procedure

CREATETRACK Appendix C, p. 130. A required parameter for this operation is,

understandably, its first GLOBALOBSERVATION.

(4) Update Operations The package, TRACKPKG, contains numerous

functions and procedures to modify/update the attributes of TRACK objects as described

in Reference 2.

b. FILTER

(1) Description: A FILTER is a predicate on TRACKs that defines a subset

of all possible TRACKs. FILTERs are used to represent display policies. They describe a

set of characteristics that a TRACK must possess in order to be graphically displayed.

46

Complex FILTERs are defined in terms of simpler ANDFILTERs. A FILTER predicate

is a disjunction (or) of one or more ANDFILTERs; that is, if a TRACK meets all

requirements of at least one of the ANDFILTERs, it is accepted for display.

AND_FILTERs are composed of simpler ATOMIC_FLTERs. An ANDFILTER

predicate is a conjunction (and) of zero or more ATOMIC_FILTERs; a TRACK satisfies

an ANDFILTER if it meets all requirements of its component ATOMICFILTERs. Each

ATOMIC_FILTER defines a single relational constraint on a TRACK. The

implementation of the FILTER type is given in Appendix D, p. 153.

(2) Attributes: ATOMICFILTERs have the form [FILTER_CATEGORY

RELATION CONSTANT]. The possible values of FILTERCATEGORY are

DISTANCEFILTER, TRACKCATEGORYFILTER, and PLATFORMIDENTITY_

FILTER.

a. DISTANCEFILTER describes a TRACK's distance from a

reference TRACK or the TRACK's altitude (if air).

b. TRACKCATEGORYFILTER describes a TRACK's

TRACKCATEGORY.

c. PLATFORMIDENTITYFILTER describes a TRACK's

IDENTITYTYPE (UNKNOWN, HOSTILE, FRIENDLY, NEUTRAL).

d. RELATION identifies the FILTERCATEGORY's relation to the

input CONSTANT. The possible values of a RELATION are EQUAL, NOTEQUAL,

LESS, LESSOREQUAL, GREATER, and GREATEROREQUAL. An example

ATOMICFILTER is "TRACKCATEGORY EQUAL SURFACEPLATFORM." This

means that one requirement (ATOMICFILTER) of an ANDFILTER is that the TRACK

must be of TRACKCATEGORY SURFACEPLATFORM.

(3) Creation Operations: ATOMICFILTERs are created through calls to

either: MAKEDISTANCEATOMICFILTER, MAKETRACKCATEGORY_

ATOMICFILTER, or MAKEPLATFORMIDENTITYATOMIC_FILTER.

47

Following the creation of an ATOMICFILTER, it is appended to its parent ANDFILTER

through a call to ADDATOMIC_FILTERTOAND_FILTER. Once an ANDFILTER

has been fully defined, it is appended to the FILTER through a call to

ADDANDFILTERTOFILTER.

(4) Update Operations: FILTERs are updated as a result of the addition of

ANDFILTERs. Once the FILTER is filled, the contents of that FILTER are unchangeable,

unless a new FILTER is created, thus deleting the old ATOMICFILTERs and

ANDFILTERs.

c. TRACKDATABASE

(1) Description: TRACKDATABASE represents the LCCDS database of

TRACKs. The implementation of the TRACKDATABASE type is given in Appendix Q,

p. 231.

(2) Attributes: ACTIVETRACK(TRACKDATABASE) returns a boolean

value that tells whether or not a TRACK is active in the database. For example, following

a call to FINDTRACKINDBASE(TRACKID), the function

ACTIVETRACK(TRACKDATABASE) will return FALSE if the TRACK was not

found. Active relates to a TRACK receiving periodic updates by the function

ADDTRACKOBSERVATION.

(3) Creation Operations: LCCDS contains one, and only one, object of type

TRACKDATBASE that is created at system initialization.

(4) Update Operations: TRACK_DATABASE is updated when a TRACK

is added to the database (ADDTRACK_TO_DBASE), when a TRACK is deleted from

the database (DROPTRACKFROMDBASE), and when the entire database is deleted

(PURGEENTIREDBASE).

48

d. GLOBALPOSITION

(1) Description: A GLOBALPOSITION represents the earth coordinates

of a TRACK geographic location. The implementation of the GLOBAL_POSITION type

is given in Appendix N, p. 219. Internally we use a right-handed coordinate system

centered on the center of the earth. The z axis points to the north pole, and the x axis points

to the intersection of the equator and the Greenwich Meridian.

(2) Attributes: The geographic location is defined as a latitude and longitude

of the TRACK. Latitude is defined as an angle from the equator (PHI) and Longitude is an

angle from the Greenwich Meridian (THETA). GET LATITUDE(GLOBALPOSITION)

and GETLONGITUDE(GLOBAL_POSITION) are attributes of GLOBALPOSITION

that refer to latitude and longitude, respectively. A GLOBALPOSITION, as used in

LCCDS, cannot be changed once created. Its value can, however, be retrieved for use in the

computations of other values.

(3) Creation Operations: The operations that create a GLOBALPOSITION

are MAKEGLOBALPOSITION and FINDGLOBALPOSITION.

MAKEGLOBALPOSITION accepts the numerical equivalents of degrees, minutes, and

seconds, as well as the latitude and longitude hemisphere ideatifiers and returns a

GLOBALPOSITION in terms of PHI and THETA. FIND_GLOBALPOSITION returns

a calculated GLOBALPOSITION based on a RELATIVEPOSITION from another

GLOBALPOSITION.

(4) Update Operations: None

e. LINKTYPE

(1) Description: A LINKTYPE represents a tactically significant contact as

reported over Link-li (in MSERIESMSG format). The implementation of the

LINKTYPE type is given in Appendix R, p. 238.

49

(2) Attributes: These elements refer to the LINKTYPE's Link number, its

relative position from DLRP (Data Link Reference Point), the time of the observation, the

TRACK category, the TRACK identity, and its altitude (if air).

(3) Creation Operations: A LINKTYPE is created by

CONVERTMSERIESMSGTOLINKTYPE.

(4) Update Operations: Since the information used to fill an object of

LINKTYPE comes into LCCDS from an external source, LINK_TYPE is not mutable.

f ABSOLUTETIME

(1) Description: ABSOLUTE_TIME represents the year, month, and time of

day to the second. The implementation of the ABSOLUTETIME type is given in

Appendix K, p. 206.

(2) Attributes: YEAR(ABSOLUTE_TIME) refers to the calendar year.

MONTH(ABSOLUTETIME) refers to the numerical value of the calendar month.

DAY(ABSOLUTETIME) refers to the calendar day.

TIMEOFDAY(ABSOLUTETIME) refers to the number of seconds elapsed in the

current day.

(3) Creation Operations: An object of type ABSOLUTETIME is created by

initiating a function call to MAKEABSOLUTETIME. Objects of type

ABSOLUTETIME can also be created though function calls to "+", "-", or NOW.

(4) Update Operations: None.

g. VECTOR_2

(1) Description: Describes a two-dimensional vector defined in terms of

floating point numbers, representing a TRACK's course and speed or its bearing and range.

The implementation of the VECTOR_2 type is given in Appendix G, p. 186.

50

(2) Attributes: LENGTH(VECTOR_2) refers to speed or range.

DIRECTION(VECTOR_2) refers to course or bearing. XCOORDINATE(VECTOR_2)

refers to the X coordinate of the vector. YCOORDINATE(VECTOR_2) refers to the Y

coordinate of the vector.

(3) Creation Operations: Operations that create instances of VECTOR_2 are

MAKE. .POLARVECTOR_2 and MAKE__CARTESIANVECTOR_2. Operations that

create instances of VECTOR.2 by mathematical manipulations are "+" (the addition of

two vectors), "-" (subtraction of one vector from another), DOTPRODUCT, "*"

(multiplication of a vector by a scalar factor).

(4) Update Operations: None.

h. VECTOR_3

(1) Description: Describes a three-dimensional vector defined in terms of

floating point numbers. The implementation of the VECTOR_3 type is given in Appendix

H,p. 194.

(2) Attributes: Attributes of VECTOR_3 include LENGTH(VECTOR_3),

X_COORDINATE(VECTOR_3), YCOORDINATE(VECTOR_3),

ZCOORDINATE(VECTOR-3), THETA(VECTOR_3), and PHI(VECTOR_3).

(3) Creation Operations: Operations that create instances of VECTOR_3 are

MAKEPOLARVECTOR_3, MAKECARTESIANVECTOR_3. Operations that

create instances of VECTOR-3 by mathematical manipulations are "+" (the addition of

two vectors), "-" (subtraction of one vector from another), DOT_PRODUCT,

CROSSPRODUCT, SCALE (multiplication of a vector by a scalar factor)

(4) Update Operations: None.

51

3. TASK INTEGRATION SYSTEM:

The purpose of the task is to manage the track database. The task receives data or

information from various sources and translate/parse this raw data input into integration

system formatted data that the userinterface can graphically display. The task defines

entry calls to the various tasks, functions, and procedures that create, delete, or otherwise

modify TRACKs and FILTERs. The INTEGRATIONSYSTEM task also provides a

timing function for the task PROCESSLINKTRACKS that retrieves and modifies Link

11 input. The INTEGRATIONSYSTEM task is necessary to provide a RealTime

environment for the integration system. The task allows parallel processing to take place

preventing one function or procedure from dominating the CPU.

A list of the entry calls defined by the task follows:

• Entry CREATETRACK: Creates a TRACK and enters it into the

TRACKDATABASE.

• Entry DELETETRACKANDSENDTOHISTORY: Deletes a
TRACK from the active TRACKDATABASE and sends it to history.

* Entry ADDTRACKOBSERVATION: Adds an observation to an

existing TRACK, using relative position from OWNSHIP as the

observation location.

• Entry SETTRACKIDENTITY: Sets/changes a TRACK's IDENTITY.

* Entry SETAMPLINFO: Sets/changes a TRACK's

AMPLIFYINGINFO.

* Entry SETPLATFORMCLASS: Sets/changes a TRACK's CLASS.

• Entry SETVESSELNAME: Sets/changes a TRACK's NAME.

* Entry SET-ALTITUDE: Sets/changes a TRACK's ALTITUDE.

* Entry GET-CONTROL: Gets a TRACK's CONTROL.

* Entry SET-CONTROL: Sets/changes a TRACK's CONTROL.

52

* Entry CHANGETRACKCATEGORY: Sets/changes a TRACK's

IDENTITY.

* Entry BUILDWAYPOINTSPECIALPOINT: Builds a WAYPOINT

TRACK.

* Entry BUILDNAV_HAZARDSPECIALPOINT: Builds a

NAVHAZARD TRACK.

* Entry BUILDGENERALSPECIALPOINT: Builds a GENERAL

SPECIALPOINT TRACK.

* Entry BUILDPATH: Builds a PATH TRACK.

Entry BUILDABSOLUTECIRCLEREGION: Builds an ABSOLUTE

CIRCLE REGION TRACK.

* Entry BUILDRELATIVECIRCLEREGION: Builds a RELATIVE

CIRCLE REGION TRACK, with the radius of the circle in yards and
position of circle center relative to reference track position.

" Entry BUILDABSOLUTEPOLYGONREGION: Builds an

ABSOLUTE POLYGON REGION TRACK.

* Entry BUILDRELATIVEPOLYGONREGION: Builds a RELATIVE

POLYGON REGION TRACK.

" Entry CHANGECOURSE: Adds TRACK observation reflecting

TRACK's course change.

" Entry CHANGESPEED: Adds TRACK observation reflecting TRACK's

speed change.

* Entry CHANGEGLOBALPOSITION: Adds TRACK observation
reflecting TRACK's position change.

Entry MAKEDISTANCEATOMIC_FILTER: Makes an

ATOMICFILTER based on distance type attributes and adds it to the

current ANDFILTER.

53

" Entry MAKEJTRACKCATEGORYATOMICFILTER: Makes an

ATOMIC_FILTER based on TRACK category type attributes and adds it to

the current ANDFILTER.

" Entry MAKE_PLATFORM_IDENTITYATOMIC_FILTER: Makes an

ATOMICFILTER based on TRACK identity type attributes and adds it to

the current ANDFILTER.

Entry ADDANDFILTERTOFILTER: Adds a filled ANDFILTER to

the current FILTER.

* Entry CLEARFILTER: Clears the FILTER to make way for a new one.

" Entry WRITEFILTER: Writes a filled FILTER to an archive file for

historical purposes.

* Entry FILLTACPLOT: Fills the tactical display structure with TRACKs

that pass FILTER requirements.

* Entry SETSENSORSTATUS: Flags the system as to whether or not to

accept input from a particular OWNSHIP sensor.

" Entry GETSENSORSTATUS: Gets the current input status from a

particular OWNSHIP sensor.

" Entry SHUTDOWN: Purges the TRACKDATABASE, sending each
TRACK to an archive file. Also writes archived TRACK info and FILTER

info to text files. Aborts the GPS update task.

4. TASK GPSUPDATETASK:

The purpose of the task is to interface to a Global Positioning System via the RS-

232 communication port. The task reads in a string of data that represents the geographic

position of the ship at the time the data was received, and store the Global Positioning

System data in a buffer. The task defines no entry calls but, invokes the procedure

AddTrackObservation which accepts the geographic position reported by t',e Global

Positioning System as a new observation. Retrieves GPS data every four seconds and adds

5

54

a new OWNSHIP TRACK observation The task is a separate task because if it were a

procedure or function the system would not be released to perform any other operations.

No entry calls are defined from GPSUPDATETASK.

5. TASK LINK CYCLE:

The purpose of the task is to limit the rate of the Link input. The task has an

endless loop that clocks the time p'riod of four seconds between loops. Each loop the task

calls the procedure that reads in the Link buffer and processes the MSeriesMessages

into LinkTracks and stores them in the database. The single entry call defined by the task

is listed below:

a. entry STARTLINKUPDATE;

Link 11 information request performed every 4 seconds

6. TASK PROCESSLINKTRACK:

The purpose of the task is to process the Link 11 MSeriesMessages into

LinkTrack format. After processing the message buffer the task checks the database to see

if the track is active. If the track is found the process updates the track with a

GlobalObservation. If the track is not found the Track is created and stored in the

database.

No entry calls are defined by PROCESSLINKTRACK.

B. DATABASE MODEL

Design and development of the database for the LCCDS is driven by four goals:

1. Performance: Does the structure of the database support fast access to the data? Can

the system(USER) retrieve and update relevant data within specified response time?

2. Integrity: To what extent does the database guarantee that correct data is stored and

is not accidentally corrupted?

55

3. Understandability: How coherent is the structure of the database to the user? After

a long period of time, will it still be understandable to the designers and others?

4. Extensibility: How easily can the database be extended to new applications without

disrupting the present or on-going system?

Keeping these goals in mind, we define the requirements/restrictions placed on the

database.

1. The object-oriented database is to be implemented in Ada.

2. The database is to be divided into two parts.

a. An active database in main memory.

b. A historical database in secondary memory.

3. Develop a RealTime system.

a. Time meets the four second RealTime requirement with respect to start time

and completion time of a specific transaction(Task,Procedure,Function).

b. The current design assumes a single processor system.

Design of the tactical database starts with identification of objects and classes. The

initial phase consist of analysis of the objects proposed in reference 35. The requirements

are not difficult since most objects are identified by references 34 and 35, but, careful

analysis of the objects and their class along with the methods are necessary before starting

to build the database. First we establish that the database has only one class the abstract data

type Track. Each object of this class has object variables specific to that object

Our objective is to use the object-oriented approach in the databade design. An object-

oriented distributed program system is modeled as a collection of task or procedures

containing transactions and data objects which synchronize their operations through

messages. To elaborate, when discussing Ada tasking and communication complexity for

56

distributed programs, the key property to be considered is that both consist of a number of

processes or task that execute asynchronously in parallel, but communicate and

synchronize by message passing.

While considering requirements complexity, looking at distributed programs which

realize concurrency by parallel execution of separate tasks and which constrain the

concurrency by introducing task communication. We came to the conclusion that program

complexity consist of two components:

1. A local complexity which reflects the complexity of the individual task.

2. Communication complexity which reflects the complexity of the interactions

among tasks.

A transactions accesses objects indirectly by communication of its desires to the

transaction manager, which then sends a message to the appropriate object manager.

Although transaction and object managers may maintain more than one transaction or

object, we assume, with confidence, that the transaction manager controls on transaction at

a time, and each object manager controls one object. The internal structure of a transaction

manager consist of two components, the transaction body, and the probe queue. When a

transaction request an object, the transaction manager sends a message to the object

manager with the request. The object manager either grants or denies the request depending

upon whether or not the transaction will create a conflict(deadlock) with some transactions

already holding the object. The internal structure of the object manager contains:

1. A LOCKLIST which holds information about those transactions that currently

hold a lock on the object.

2. A REQUESTLIST which lists those transactions currently having an outstanding

request on the object.

3. A COMPATIBILITYTABLE which holds information on the compatibility of

operations on the object.

57

The compatibility table is used by the concurrency control algorithm. The algorithm

is based on the read/write lock model and may allow more than one holder since the object

can be shared among transactions requesting read only locks. Concurrency control is

insured because we have insisted that all transactions run to completion or they don't start

running. We accomplish this by building a schedule of transactions to run. Because task run

in parallel, it is important to insure the completion of specific parts of the program or task

before allowing the remaining procedures or task to run. By insuring this scheduling holds,

the results are the same as if the program or task was running individually.

The database stores the track data which contains ali the amplifying information

needed to identify the contact. The Identification number is assigned by the integration

system at the time the track is stored in the database. Because the data structure is a linked

list the track ID numbers can range from one to infinity, with zero reserved for ownship. If

the track in local the system will assign the next number to the track, but if the track is a

link track the system must check if the track is active or not. If the track is active then the

system simply updates the track. However, if the track does not exist the system assigns a

system track number and add the numbers to a cross reference tables. The cross reference

table is used to keep track of what link track goes with what system track. After the table

entry is made the system then stores the track in the database. Each track stored in the

database has added to it a link listed which contain each of the global observations. Each

global observation contains the global position and time of observation for the specific

track. The most recent observation is added to the head of the list enabling the system to

retrieve the current position with better time efficiency.

As discussed in the previous chapter, GPS data is received and buffered once every

second. The integration system once every four seconds lock the buffer for writing in order

to prevent inadvertent changing of data while reading. The integration systems package

"navigation handler" reads the GPS data, translate the data to system format as illustrated

58

in Figure 18 and stores the data as ownship location in the database track zero. Likewise,

the LMS 1 Ir the intermediate link 11 processor sends a series of MSeriesMessages

through the decoder. The integration system receives the data which is buffered for reading

by the integration systems "link processor". The integration system once every four

seconds lock the link buffer to prevent changing of data while reading is taking place. Then

read the data and store it in the database by the appropriate track number assigned.

Tracks are stored to secondary memory(History) only when the active track is deleted

from the active database. If the system crashes, the active tracks in the active database are

lost. However, these tracks can and must be recreated when the system is brought back on

line. The user may select any number of tracks from the historical database to review by

calling READTRACKFROMARCHIVES and entering the track number/numbers

desired. The integration system retrieves from secondary memory each track desired and

stores a copy of it in an array then passes the array to the user for graphic display.

59

TRACKNODE

Type: TRACK TP Type: TRACK TP
r t rt

Track-type a r Track-type a r

Trk Obs Ptr c TrkObsPtr k
kk

Global Obs GlobalObs

Trk Os tr Trk-Os tr

Global Obs GlobalOhs

Trk Os tr Trk _ s_ tr

GlobalOhs

Trk _bstr

Figure 18: DATABASE STRUCTURE

60

C. LINK 11 MODEL

It is important to note that most material related to and involving the link 11 system is

classified confidential or higher. This document however, is unclassified, therefore the

discussion of the link 11 system and the interface to it is limited to the unclassified portion.

The link 11 signal is transmitted via UHF/HF radio communications to the fleet. We

purpose to use an existing system LMS 1 lr to be an intermediate step between the LCCDS

integration system and the link 11 receiver on the platform of choice. The LMS 1 Ir is a unit

already tested and in use. The General Specifications and Operational Specifications are,

according to our source, in the Department of Defense supply system [Ref. 40].

The Link 11 interface with the integration system consists of a link 11 handler

designed inside the integration system and communicating directly with the LMS 1 Ir

system. The link handler is an Ada function which breaks a string of characters into the

individual parts of the track data type and stores the array of parts in a buffer waiting for

the integration system to lock the buffer and read out the data. The integration system then

unlocks the buffer and the link handler repeats the process.

Link 11 data consist of two parts: a DataLinkReferencePoint(DLRP) and a string

of tracks reported by fleet assets with reference to the DLRP. The DLRP must be entered

manually in the system by the user. The link handler translates the DLRP into a

GlobalPosition and stores it as a regular track. The integration system assigns a special

non changing track number to the DLRP that is determined at the time DLRP is entered.

This track number will be determined by the system each time DLRP is entered. Utilizing

this special track number the system calculates the relative position of the DLRP relative

to ownship and the GlobalPosition of each track in the Link 11 database. The

User_Interface selects the reference track and invokes the integration system function

RelativePosition to compute the relative position of each Link 11 track to the reference

61

track. If the user does not select a reference track the system uses ownship as the default

reference track and computes the RelativePosition of each Link 11 track relative to

ownship.

The track is then stored in the database with a system assigned track number. In order

to keep track of which link track matches with which system track, a table is constructed in

the integration system. The table contains three elements, the link track number, the

corresponding system track number and a pointer to link them together. When an updated

set of tracks is received the system searches the table to see if the link track is an active

system track. If the link track is found to be an active system track the system updates the

GlobalObservation of the corresponding system track. If the link track is not found, the

system calls create track, assign a track number to the corresponding link track, and stores

the track in the database as illustrated in Figure 19.

The integration system scans the link track table for time out every four seconds

covering every track in the database designated as link control. The user may at any time

take local control of a link track simply by changing the track control to local. A time out

event causes the system to drop the link track from the active database. This action is

necessary in situations where no updates on the specific track have been received in a pre-

assigned time period. By doing so the system removes all inactive link tracks from the

active database, freeing up space for new ones. The procedure has no control over local

designated tracks. The user must clean house for these user generated tracks or tracks the

user has changed from link to local control.

62

...<** x '~

iCrypto-UnitKG-40

TRACK

Track-data Track

Observation

Figure 19: DATA STRUCTURE DIAGRAM(LINK 11)

63

V. EVALUATION OF SYSTEM PERFORMANCE

A. FUNCTIONAL

Initial testing of the integration system was conducted by first designing a test program

to evaluate each individual requirement [enclosure 1, Ref. 1]. The process of evaluating the

integration system included testing for correctness and timing of each procedure, function,

and task individually as illustrated in Figures 20 through 26. The test for each individual

component was conducted successfully.

The system test program was expanded to test the integration system collectively. To

accomplish this testing procedure the integration system was linked to the navigation

system for Global Position System data input. Manual tracks were entered as Link tracks

to simulate Link 11 input. Each feature of the requirements of enclosure one of Reference

I was tested for correctness. Timing for a single iteration of the requirements feature was

recorded and is illustrated in the timing diagrams Figure:, 20 through 26.

A list of the test and evaluation of the system follows:

1. Track testing phase: Testing of the Track package required the evaluation of each

procedural operation and capability specified by the requirement specification. The

list of these steps and their results are:

Allow the user to create a manually input track and store the track in the database: The

user may enter a track by either entering the bearing and range to the track from a

reference track or by entering a GlobalPosition of the new track. Timing is well

within the RealTime range and correctness is verified.

The integration system adds a new track to the database when the user manually inputs

a track or when a track is received from the link processor is not found in the link to

system track number reference table located in the integration system. The integration

64

system will assign a system track number to the track and store the track in the

database. Timing is well within the RealTime range and correctness is verified.

The user has the option to delete any track from the database simply by identifying the

track by the TrackNumber, locate and retrieve the track from the database, and call

the function DELETETRACK. Deletion of a track removes the track from the active

database and stores the track and all of the global_observations to history in secondary

memory. Timing is well within the RealTime range and correctness is verified.

The system receives from GPS ownship fix data. Translates the data string into

integration system formatted track data and stores the track in the database as track

number zero. The system receives from GPS new fix data every second and stores the

data in a buffer. The integration system reads the buffer every four seconds and stores

the data in the database as the current GlobalObservation for track zero. Timing is

well within the RealTime range and correctness is verified.

The user can change the attributes of a track in the database but, cannot change a

Global_Observation. The user has the option to record or change the track category

and identity or enter any amplifying information about the track. The user can make a

manual course and speed change. The integration system will compute and record a

new course and speed based on each new GlobalObservation received or the manual

course and speed entry from the user. When the track location is received as a

GlobalPosition the system will compute the bearing and range to the track from

ownship and record the data. Timing is well within the RealTime range and

correctness is verified.

2. Velocity package testing phase: The system determines the velocity of a specified

track. Velocity is divided into course and speed of a track Timing is well within the

RealTime range and correctness is verified.

65

3. Global position package testing phase: The system allows the user to manually input

a GlobalPosition or will automatically convert a RelativePosition to a

GlobalPosition and assign the global position to a specific track. The system assigns a

relative position to a specific track from any specified reference track or defaults to

ownship as the reference track. Given a GlobalPosition the system computes the

RelativePosition. Timing is well within the Real-Time range and correctness is

verified.

4. CPA testing phase: The system determines the closest point of approach between any

two specified tracks. The CPA results are true bearing, range, and time of CPA. Timing

is well within the RealTime range and correctness is verified.

5. Filter testing phase: The system can designate a specified filter called an atomic filter

and with the mathematical expressions and/or combine a series of these atomic filters

into a specific system filter which filters tracks for display only those that meet the

specific restrictions placed on the system by the user. Timing is well within the

RealTime range and correctness is verified.

Testing of the integration system takes on two faces. The first is that of a bug or problem

finding and removal process. The second is a timing test to see if the individual Functions

and/or Procedures meet the RealTime timing constraints. The timing test is divided into two

parts, one to test the complete process run time and the second is testing e:ch iteration of the

process. Real Time is defined by NAVSEA as a four second period of time. Testing of the

integration system has revealed to date, a safe and comfortable time margin within this

RealTime period in which the system may operate.

While observing the timing graphs in section B this chapter, keep in mind that the times

used were generated by the UNIX operating system and rounded off to fit the timing graphs.

In each timing case the function tested was the primary function and may include any number

66

of called functions and procedures. The time considered for each timing graph was the

composite time required to execute the primary function. Each iteration of a proceciare/

function was also timed.

B. TIMING CHARTS FOR REAL TIME CONSTRAINTS TESTING

Timing and evaluation of the functions and tasks of the integration system was

conducted to evaluate the RealTime requirements for the LCCDS. Each entry in the

timing diagrams Figures 20 through 26 correspond to a specific requirement by the sponsor

[enclosure 1, Ref. 11. Each individual entry in the timing diagrams has two timing

categories and was conducted as previously discussed. The Isolated Module category for

each entry represents the time required to execute the requirements feature of the

procedure, function, or task as a individual unit. The System Response category for each

entry represents the time required to execute the same feature by the integration system.

Each entry in the timing diagrams was evaluated against the RealTime requirement of the

four second time period to refresh/fill the TACPLOT for graphic display of the tactical

situation.

The integration system is designed such that no single operation will dominate CPU

time. The tasks and functions that are executed on a timed cycle require a small amount of

the four second time period allowing time for the operations requested by the user. Utilizing

these procedures we have developed a set of timing charts that very closely represent the

actual CPU time required for the integration system.

67

4 Sec - REALTIME System Response

Isolated Module

3 Sec

2 Sec -

Se e

I
-wP

Create Add Set Delete
Track TrackOBS Track_ID Track

Figure 20: TIMING DIAGRAM 1

4 Sec REALTIME System Response

J :3 Isolated Module

3 Sec

2 Secn

I Sec

F~rj FEIm Z- FL
Set Ampl Set Platform Set Vessel Find CPA
Information Class Name

Figure 21: TIMING DIAGRAM 2

68

4 Sec
System Response

REALTIME Isolated Module

3 Sec

2 Sec

1 Sec

r-M I M
Set Set Change Change
Altitude Special Point Speed Course

Figure 22: TIMING DIAGRAM 3

4 Sec - ////// System Response
REALTIME ___EA-TIMIsolated

Module

3 Sec -

2 See

I Sec -

True True Relative Relative
Coursc Speed Course Spezd

Figure 23: TIMING DIAGRAM 4

69

4 Sec - REALTIME
- I ///€///////,I System Response

I[.I Isolated Module

3 Sec

2 Sec

I Sec

Global Global Relative Link 11
Position Observation Posirion Track

Figure 24: TIMING DIAGRAM 5

4 Sec - REALTIME System Response

Isolated Module

3 Sec

2 Sec

I Sec

Ownship Path Region Waypoint
Position (PIM)

Figure 25: TIMING DIAGRAM 6

7(0

4 Sec REALTIME - System Response

Isolated Module

3 Sec

2 Sec

1 Sec
-F

mF
i

Atomic Make Fill Delete
Filter Filter Tacplot Filter

Figure 26: TIMING DIAGRAM 7

71

VI. CONCLUSIONS

A. RECOMMENDATIONS

The use of reusable software is an approach that saves time and money. It is a software

development technique that works. One of the most serious problems faced today in armed

forces acquisition of new systems is the length of time between initial requirements

analysis and delivery of a usable system. This generally means that the system delivered is

already out of date when it arrives. The LCCDS design, however, takes advantage of

rapidly improving commerci al computer technology, hardware and software. Specifically,

we take advantage of reliable and inexpensive commercial workstation systems. Even more

significant is the fact that we can obtain these workstations now vice having to wait for

years while someone makes up their mind what the specification for the system should be.

During the period of our research we discovered an interesting fact: there are several

different projects being funded to do the same exact thing, to develop a Combat Direction

System that can be placed on non NTDS and NTDS ships to assist in the navigation and

daily formation steaming functions. A combined effort might produce a workable

prototype capable of accomplishing what NAVSEA has mandated. The continuation of the

LCCDS will see such a prototype in the fleet and soon after working models.

Considerable effort was expended searching for an existing software unit capable of

translating Link 11 data into a format the system could utilize. Our recommendation is to

include the LMS- I1 r a Logicon product to accomplish this task. The LMS-1 Iris a unit that

is presently in the system and can be obtained with short lead time.

A study designed to research the possibility of incorporating parts of the ATP-1C into

the system capabilities would be money well spent. All the necessary elements with the

exceptions of the algorithms are built into the system. Adding the required procedures and

functions containing the algorithms for computing solutions to ATP-IC requirements and

72

incorporating them into the system calls would accomplish this requirement. To complete

the addition of the ATP- 1 C solution solver would require the classifying of the system.

B. EVOLUTION OF THE SYSTEM

In order to accommodate the evolutionary changes in the tactical environment

resulting from changes in tactics, weapons and sensors, the LCCDS has to be capable of

quick and inexpensive software upgrades. This operational flexibility is a paramount

requirement. The system must be programmable, to adapt to system failures and the ever

changing data structure used in the integration system to support the constant evolution of

the system support software. The need for flexibility clearly dictates the use of a general

purpose, stored program, commercial computer where parts and upgrades can be

accomplished with minimum cost in time and money.

It is necessary to convert the various forms of tactical data from analog to digital

representations so that all data in the system can be represented in the same formats. Analog

to digital conversion becomes an important hardware priority. The procurement and

installation of this hardware must be addressed in the continuation of this body of research.

A follow on study would be most appropriate but not necessary as we have completed the

initial leg work and have outlined the necessary additions in hardware and software. Speed

of conversion and accuracy are the prime objectives in this task. The conversion to digital

data representation must be done as close to the source as possible to maintain accuracy

throughout the system and resultant data calculations and applications.

Different types of these conversion units must be defined and specific decisions made

as to which unit will be used in each of the more specific applications. The on-line analog

to digital conversion must be used for vital data sources such as these selected sensors:

gyro, pit log and the platforms primary radars.

73

Automatic radar detection and tracking of targets is another area of research for future

projects. This thesis has not explored this vast and complex area. At present some ships of

the fleet have a basic manual, rate aided tracking capability for all installed radars.

However, on some ships when radar is overwhelmed with tracks, using the conventional

grease pencil method of tracking and plotting, the analysis and decision making functions

border on hopelessness. There is an obvious need for the auto tracking capability to be

installed on all ships of the fleet.

Each ship equipped with LCCDS would have a real time working advantage over ships

not equipped with NTDS or the LCCDS. No longer would the commander have to wait f(:

critical data needed to make fast, accurate, life-threatening decisions need for safe ship-

handling. The commander would have more confidence in his decisions because of his

confidence in the accuracy of the LCCDS system.

74

APPENDIX A

GUIDE TO DATA TYPES

In order to better understand the integration system this guide to the data types and the

location where they can be found is provided:

VECTOR_2_PKG function "*"

ABSOLUTETIMEPKG function "+"

VECTOR 2_PKG function "+"

VECTOR_3_PKG function "+"

ABSOLUTETIMEPKG function

VECTOR_2_PKG function

VECTOR_3_PKG function "

ABSOLUTETIMEPKG function "<"

ABSOLUTE TIME PKG type ABSOLUTE TIME

TRACK PKG type ABSOLUTE VERTEX ARRAY

TRACK PKG function ABS CIRCLE CENTER

TRACK PKG function ABS REGIONVERTICES

TRACKPKG type ABS VERTEX TYPE

TRACKDATABASEPKG function ACTIVETRACK

FILTERPKG procedure ADDANDFILTERTOFILTER

FILTERPKG procedure ADD ATOMIC FILTERTOAND FILTER

TRACKPKG procedure ADD TRACK OBSERVATION

TRACKDATABASEPKG procedure ADDTRACK TO DBASE

TRACKPKG subtype AIR TRACKTYPE

TRACK PKG function ALTITUDE

TRACKPKG function AMPL INFO

TRACKPKG package AMP STR

FILTER PKG type AND FILTER

FILTER PKG type AND FILTER NODE

FILTER PKG type AND FILTERPTR

ANGLEPKG subtype ANGLE

ANGLE PKG function ARCSIN

ANGLEPKG function ARCTAN

FILTERPKG type ATOMICFILTER

FILTER PKG type ATOMIC FILTER NODE

FILTER PKG type ATOMIC FILTER OUT

FILTERPKG type ATOMICFILTERPTR

75

ANGLEPKG subtype AZIMUTH

RELATIVEPOSITION PKG function BEARINGTO

TRACKPKG procedure BUILDABSOLUTECIRCLEREGION

TRACKPKG procedure BUILDABSOLUTEPOLYGONREGION

TRACKPKG procedure BUILDGENERALSPECIALPOINT

TRACKPKG procedure BUILDNAVHAZARDSPECIALPOIN

TRACK PKG procedure BUILDPATH

TRACKPKG procedure BUILDRELATIVECIRCLEREGION

TRACK PKG procedure BUILDRELATIVEPOLYGONREGION

TRACKPKG procedure BUILDWAYPOINTSPECIALPOINT

TRACK PKG procedure CHANGECOURSE

TRACK PKG procedure CHANGEGLOBALPOSITION

TRACKPKG procedure CHANGESPEED

TRACK PKG procedure CHANGETRACKCATEGORY

TRACK PKG function CIRCLE RADIUS

FILTERPKG procedure CLEARFILTER

TRACK PKG function CONTROL

TRACKPKG type CONTROL-TYPE

ANGLEPKG function COS

VELOCITYPKG function COURSE

CPAPKG type CPATYPE

FILTERPKG procedure CREATEFILTERFILE

TRACKPKG procedure CREATETRACK

TRACK PKG procedure CREATE TRACK FILES

VECTOR 3 PKG function CROSS PRODUCT

TRACKPKG function CURRENTPOSITION

ABSOLUTETIMEPKG function DAY

ANGLEPKG function DEGREES TO RADIANS

TRACKPKG procedure DELETETRACKANDSENDTO HISTORY

VECTOR 2 PKG function DIRECTION

DISTANCEPKG subtype DISTANCE

FILTERPKG type DISTANCEATTRIBUTEID

DISTANCEPKG function DISTANCE IN NAUTICALMILES

VECTOR 2 PKG function DOT PRODUCT

VECTOR 3 PKG 'unction DOT PRODUCT

TRACKDATABASEPKG procedure DROPTRACKFROMDBASE

GLOBALPOSITIONPKG type EASTWEST

FILTERPKG subtype EQUALITYRELATION ID

FILTERDKG function EVERYTHING

NAVIGATIONPKG package E W INOUT

FILTER PKG type FILTER

76

FILTERPKG type FILTERCATEGORY

FILTERPKG package FILTERINOUT

CPAPKG function FINDCPA

GLOBAL POSITIONPKG function FINDGLOBALPOSITION

GLOBALPOSITIONPKG function FIND RELATIVEPOSITION

TRACK DATABASEPKG procedure FINDTRACKINDBASE

FILTER PKG procedure FREEANDFILTER

FILTERPKG procedure FREEATOMICFILTER

TRACK PKG procedure FREEOBS

TRACKDATABASEPKG procedure FREETRK

NAVIGATIONPKG function GETGPSUPDATE

GLOBAL POSITION PKG procedure GETLATITUDE

GLOBALPOSITION PKG procedure GETLONGITUDE

SYSTEM STATUS PKG function GET STATUS

GLOBALPOSITION PKG type GLOBALPOSITION

TRACKPKG type GLOBOBSARRAY

INTEGRATION SYSTEM PKG task GPSUPDATETASK

GLOBAL POSITION PKG function GREAT CIRCLE BEARING

GLOBAL POSITION PKG function GREAT CIRCLE DISTANCE

RELATIVE TIMEPKG function HOURS

TRACK PKG type IDENTITY TYPE

INTEGRATIONSYSTEMPKG task INTEGRATIONSYSTEM

VECTOR- G function LENGTH

VECTOR3_PtG function LENGTH

INTEGRATION SYSTEM 2KG task LINKCYCLE

LINK_2KG type LINKPTR

LINKPKG type LINKTABLE

LINKPKG type LINKTYPE

ABSOLUTETIMEPKG function MAKL ABSOLUTETIME

VECTOR_2_PKG function MAKECARTESIANVECTOR_2

VECTOR 3 PKG function MAKE CARTESIAN VECTOR_3

FILTER PKG procedure MAKEDISTANCEATOMICFILTER

TRACK PKG function MAKE GLOBAL OBSERVATION

GLOBALPOSITION PKG function MAKEGLOBALPOSITION

DISTANCEPKG function MAKENAUTICALMILESDISTANCE

FILTER PKG procedure MAKEPLATFORMIDENTITYATOMICFILTER

VECTOR 2 PKG function MAKE POLAR VECTOR 2

VECTOR 3 PKG function MAKE POLAR VECTOR_3

RELATIVE TIMEPKG function MAKERELATIVETIME

SPEED PKG function MAKESPEED

FILTER PKG procedure MAKE TRACK CATEGORY ATOMIC FILTER

77

VELOCITY PKG function MAKE VELOCITY

TRACKPKG subtype MANINWATERTRACKTYPE

RELATIVE TIME PKG function MINUTES

ABSOLUTE TIME PKG function MONTH

TRACK PKG function MOST RECENTOBSERVATION

M_SERIESMSGPKG type MSERIESMSG

MSERIESMSGPKG type MSERIESMSGBUFFER

TRACKPKG subtype NONDISPLAYABLETRACKTYPE

VECTOR 2 PKG function NORMALIZE

VECTOR 3 PKG function NORMALIZE

GLOBALPOSITIONPKG type NORTHSOUTH

ABSOLUTE TIMEPKG function NOW

TRACKPKG subtype NUMHISTORYPTS

TRACKPKG subtype NUM PATH PTS

TRACKPKG subtype NUMVERTICES

NAVIGATIONPKG package NSINOUT

TRACKPKG function PATH POINTS

TRACK PKG subtype PATH TRACK TYPE

TRACK__PKG type PATHTYPE

VECTOR 3 PKG function PHI

TRACK PKG function PLATFORMCLASS

TRACKPKG procedure PRINTGLOBALPOSITION

TRACKPKG procedure PRINTOBSERVATIONTIME

FILTERPKG procedure PRINTTIMEOUT is

PROCESSLINKTRACKSPKG procedure PROCESSMSGBUFFER

TRACKDATABASEPKG procedure PURGEENTIREDBASE

ANGLEPKG function RADIANS TO DEGREES

RELATIVE POSITION PKG function RANGE OF

TRACKPKG function REGIONCATEG

TRACK PKG type REGION CATEGORY

TRACKPKG type REGION PLACEMENT

TRACKPKG function REGION PLCMT

TRACKPKG subtype REGIONTRACKTYPE

TRACKPKG type REGIONTYPE

FILTER PKG type RELATIONID

TRACK PKG function RELATIVE BEARING

TRACK PKG function RELATIVE CIRCLE REFERENCE TRK NUM

TRACKPKG function RELATIVECIRCLEREFERENCE _TRKPOS

TRACKPKG function RELATIVECOURSE

RELATIVEOBSERVATIONPKGtype RELATIVEOBSERVATION

RELATIVEPOSITIONPKG subtype RELATIVE-POSITION

78

TRACKPKG function RELATIVEREGIONREFERENCETRKNUN

TRACKPKG function RELATIVE REGIONREFERENCETRKNUM

TRACK PKG function RELATIVESPEED

RELATIVE TIME PKG subtype RELATIVETIME

TRACKPKG type RELATIVEVERTEXARRAY

TRACK PKG function RELCIRCLECENTER

TRACK PKG function RELREGIONVERTICE

TRACKPKG type RELVERTEXTYPE

TRACKDATABASEPKG procedure RESTOREALTEREDTRACK TO DATABASE

VECTOR 2 PKG function ROTATE

VECTOR 3 PKG function SCALE

RELATIVE TIME PKG function SECONDS

SYSTEMSTATUSPKG type SENSOR

TRACKPKG procedure SETALTITUDE

TRACK PKG procedure SET AMPL INFO

TRACKPKG procedure SETCONTROL

TRACKPKG procedure SETPLATFORMCLASS

SYSTEMSTATUSPKG procedure SETSTATUS

TRACK PKG procedure SETTRACKIDENTITY

TRACK PKG procedure SETVESSELNAME

ANGLE PKG function SIN

VELOCITY PKG function SPD

TRACK PKG type SPECIAL POINTCATEGORY

TRACKPKG subtype SPECIALPOINTTRACKTYPE

TRACK PKG type SPECIALPOINTTYPE

TRACK PKG function SPECPOINTCATEGORY

SPEED PKG subtype SPEED

SPEED PKG function SPEED IN KNOTS

VECTOR 2 PKG function SQRT

VECTOR 3 PKG function SQRT

SYSTEM STATUSPKG type STATUS

TRACKPKG subtype SUBSURFACETRACKTYPE

TRACK PKG subtype SURFACETRACKTYPE

SYSTEMSTATUSPKG type SYSTEMSTATUS

TRACK PKG function TARGET RELATIVE VELOCITY

INTEGRATIONSYSTEMPKG package TCINOUT

FILTER PKG function TEST ATOMIC FILTER

FILTER PKG function TEST FILTER

VECTOR 3 PKG function THETA

ABSOLUTETIMEPKG function TIME OF DAY

TRACKPKG type TRACK

79

TRACKPKG type TRACKCATEGORY

TRACKDATABASE PKG type TRACKDATABASE

TRACKPKG package TRACKDATAOUT

TRACK PKG procedure TRACK HISTORY

TRACK PKG function TRACK IDENTITY

TRACK PKG function TRACK ID NUMBER

TRACKDATABASEPKG type TRACKNODE

TRACKPKG type TRACKOBS

TRACKPKG package TRACKOBSOUT

TRACKPKG type TRACKOBSPTR

TRACKDATABASE_PKG type TRACKPTR

TRACKPKG type TRACKTYPE

TRACK PKG function TRK CATEGORY

TRACKPKG function TRUEBEARING

TRACKPKG function TRUECOURSE

TRACKPKG function TRUESPEED

TRACK PKG function TRUE VELOCITY

TRACK PKG type TOBS

TRACK PKG procedure
UPDATERELATIVE CIRCLE REFERENCETRKPOS

TRACK PKG procedure
UPDATE RELATIVEREGIONREFERENCETRKPOS

VECTOR_2_PKG type VECTOR_2

VECTOR 3_PKG type VECTOR 3

VELOCITYPKG subtype VELOCITY

TRACKPKG function VESSEL NAME

INTEGRATIONSYSTEM PKG package VPKG

TRACKPKG package VAND C STR

TRACK PKG function WAYPNT

TRACKPKG type WAYPOINTARRAY

TRACK PKG type WAYPOINTTYPE

FILTERPKG procedure WRITE FILTER

FILTER PKG procedure WRITE FILTER ARCHIVESTOTEXTFILE

TRACKPKG procedure WRITE TRACK ARCHIVES TO TEXT FILE

VECTOR 2 PKG function X COORDINATE

VECTOR 3 PKG function X COORDINATE

ABSOLUTE TIME PKG function YEAR

VECTOR_2_PKG function Y COORDINATE

VECTOR 3 PKG function Y COORDINATE

VECTOR 3_PKG function ZCOORDINATE

80

APPENDIX B

INTEGRATION SYSTEM

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

-- Description : Defines tasks INTEGRATION-SYSTEM, GPSUPDATETASK,
LINKCYCLE

-- and associated entries

with TRACKPKG, GLOBALPOSITIONPKG, GLOBALOBSERVATIONPKG, ANGLEPKG,

SPEED PKG, DISTANCEPKG, RELATIVE POSITIONPKG, FILTERPKG,
TACPLOT PKG,

SYSTEMSTATUSPKG, ABSOLUTET M- _KG;

use TRACKPKG, GLOBALPOSITIONPKG, GLOBALOBSERVATION PKG, ANGLEPKG,

SPEED PKG, DISTANCEPKG, RELATIVEPOSITIONPKG, FILTERPKG,
TACPLOTPKG,

SYSTEMSTATUSPKG, ABSOLUTETIMEPKG;

package INTEGRA'1ON SYSTEM 2KG is

-- Contains entries that deal with procedures to alter the main

-- TRACK-DATABASE, the FILTER, or the SYSTEMSTATUS

task INTEGRATIONSYSTEM is

-- Creates a TRACK and enters it into the TRACK DATABASE

entry CREATETRACK

OBS : in GLOBAL OBSERVATION;

81

TRKCAT : in TRACK CATEGORY);

-- Deletes a TRACK from the TRACKDATABASE and sends it to history

entry DELETETRACKANDSENDTOHISTORY

TRKNUM : in NATURAL);

-- Adds an observation to an existing TRACK

entry ADDTRACK OBSERVATION

(TRK NUM : in NATURAL;

OBS : in GLOBALOBSERVATION);

-- Adds an observation to an existing TRACK, using relative position

f rom

-- OWNSHIP as the observation location

entry ADDTRACK OBSERVATION

(TRK NUM : in NATURAL;

POS : in RELATIVEPOSITION);

-- Sets/changes TRACK's IDENTITY

entry SETTRACK IDENTITY

(TRK NUM : in NATURAL;

TID : in IDENTITYTYPE);

-- Sets/changes TRACK's AMPLIFYING INFO

entry SETAMPL INFO

(TRK NUM : in NATURAL;

AMP : in STRING);

-- Sets/changes TRACK's CLASS

entry SETPLATFORM CLASS

(TRK NUM : in NATURAL;

PC : in STRING);

-- Sets/changes TRACK's NAME

entry SET VESSEL NAME

(TRK NUM : in NATURAL;

VES : in STRING);

-- Sets/changes TRACK's ALTITUDE

entry SETALTITUDE

TRKNUM : in NATURAL;

82

ALT : in DISTANCE);

-- Gets TRACK's CONTROL

entry GETCONTROL

(TRK NUM : in NATURAL;

CON : out CONTROLTYPE);

-- Sets/changes TRACK's CONTROL

entry SETCONTROL

(TRKNUM : in NATURAL;

CON : in CONTROLTYPE);

-- Sets/changes TRACK's IDENTITY

entry CHANGE_TRACKCATEGORY

(TRK NUM : in NATURAL;

CAT : in TRACKCATEGORY);

-- Builds a WAYPOINT TRACK

entry BUILD_WAYPOINTSPECIALPOINT

(POS in GLOBAL POSITION;

TYME in ABSOLUTETIME); -- time to waypoint

-- Builds a NAV HAZARD TRACK

entry BUILD_NAVHAZARDSPECIALPOINT

OBS : in GLOBAL OBSERVATION);

-- Builds a GENERAL SPECIAL POINT TRACK

entry BUILD_GENERALSPECIALPOINT

OBS : in GLOBALOBSERVATION);

-- Builds a PATH TRACK

entry BUILD_PATH

PTS : in WAYPOINTARRAY); -- points in path

-- Builds an ABSOLUTE CIRCLE REGION TRACK

entry BUILD ABSOLUTECIRCLE REGION

RAD ; in DISTANCE; -- radius of circle(yds)

CTR : in GLOBALPOSITION); posn of circle center

-- Builds a RELATIVE CIRCLE REGION TRACK

entry BUILD_RELA'IVECIRCLEREGION

83

RAD : in DISTANCE; -- radius of circle(yds)

CTR : in RELATIVEPOSITION; -- posn of circle center relative

-- to ref trk pos

REFTRKNUM : in NATURAL); -- reference track number

-- Builds an ABSOLUTE POLYGON REGION TRACK

entry BUILD ABSOLUTE POLYGONREGION

AVA : in ABSOLUTEVERTEXARRAY); -- pts in polygon

-- Builds a RELATIVE POLYGON REGION TRACK

entry BUILD RELATIVEPOLYGONREGION

RVA : in RELATIVEVERTEXARRAY; -- pts in poly reltv to ref trk

-- position

REF TRK NUM : in NATURAL); -- reference track number

-- Adds TRACK observation reflecting TRACK's course change

entry CHANGE COURSE

(TRKNUM : in NATURAL;

CRS : in ANGLE);

-- Adds TRACK observation reflecting TRACK's speed change

entry CHANGE SPEED

(TRKNUM : in NATURAL;

SPD : in SPEED);

-- Adds TRACK observation reflecting TRACK's position change

entry CHANGE GLOBAL POSITION

(TRKNUM : in NATURAL;

POS : in GLOBALPOSITION);

-- Makes an ATOMIC FILTER based on distance type attributes and adds it

-- to the current AND FILTER

entry MAKEDISTANCEATOMICFILTER

(DAFATTRIBID : in DISTANCEATTRIBUTEID;

DAFLIMIT : in DISTANCE;

DAFREFTRKNUM : in NATURAL;

DAFRELATION : in RELATIONID);

-- Makes an ATOMICFILTER based on TRACK category type attributes and
adds

-- it to the current AND FILTER

84

entry MAKETRACKCATEGORYATOMICFILTER

(TCAFDESIREDTRKCAT : in TRACKCATEGORY;

TCAFEQRELID : in EQUALITYRELATIONID);

-- Makes an ATOMICFILTER based on TRACK identity type attributes and

adds

-- it to the current AND FILTER

entry MAKEPLATFORMIDENTITYATOMICFILTER

(PIAF DESIRED PLAT ID : in IDENTITY TYPE;

PIAFEQRELID : in EQUALITYRELATIONID);

-- Adds a filled AND FILTER to the current FILTER

entry ADDANDFILTERTOFILTER;

-- Clears the FILTER to make way for a new one

entry CLEARFILTER;

-- Writes a filled FILTER to an archive file for historical purposes

entry WRITE FILTER;

-- Fills the tactical display structure with TRACKs that pass FILTER

-- requirements

entry FILLTACPLOT;

-- Flags the system as to whether or not to accept input from a
particular

-- OWNSHIP sensor

entry SET SENSOR STATUS

(SENSER in SENSOR;

SENSERSTATUS : in STATUS);

-- Gets the current input status from a particular OWNSHIP sensor

entry GET SENSOR STATUS

(SENSER in SENSOR;

SENSERSTATUS : out STATUS);

-- Purges the TRACKDATABASE, sending each TRACK to an archive file.

-- Also writes archived TRACK info and FILTER info to text files.

-- Aborts the GPS update task.

entry SHUTDOWN;

85

end INTEGRATION-SYSTEM;

-- Retrieves GPS data every 4 seconds and adds a new OWNSHIP TRACK

-- observation

task GPSUPDATETASK;

-- Performs timing function for LINK-lI updates

task LINK CYCLE is

entry START LINK UPDATE;

end LINKCYCLE;

end INTEGRATIONSYSTEMPKG;

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

with TRACKDATABASEPKG, VECTOR_2_PKG, CALENDAR, NAVIGATIONPKG;

use TRACKDATABASEPKG, VECTOR_2_PKG, CALENDAR, NAVIGATIONPKG;

package body INTEGRATIONSYSTEMPKG is

package APKG renames TRACKPKG.AMPSTR;

package VPKG renames TRACK PKG.V ANDCSTR;

use APKG, VPKG;

package INTEGER INOUT is new INTEGERIO (INTEGER);

package TC INOUT is new ENUMERATIONIO (TRACK CATEGORY);

use TCINOUT;

TRACKDB : TRACKDATABASE;

DISTATFILT : ATOMIC FILTER;

86

TRKCATATFILT ATOMICFILTER (TRACKCATEGORY FILTER);

PLTFMIDATFILT ATOMICFILTER (PLATFORM IDENTITY FILTER);

ANDFILTUR : ANDFILTER;

FILTUR : FILTER;

ACTIVETRACK TRACK;

OTHERTRACK TRACK;

OWNSHIP : TRACK;

SYSTUMSTATUS SYSTEMSTATUS;

LASTTRKNUM NATURAL := 0;

VSI VPKG.VSTRING;

VS2 APKG.VSTRING;

OBS GLOBALOBSERVATION;

POS GLOBALPOSITION;

TNUM NATURAL;

PASSEDFILTER : BOOLEAN;

task body INTEGRATIONSYSTEM is

begin

loop

select

............................. CREATE TRACK

accept CREATETRACK

OBS : in GLOBAL OBSERVATION;

TRKCAT : in TRACKCATEGORY) do

-- Restore previous ACTIVETRACK to TRACKDATABASE before creating

new one

RESTOCE_ALTERED TRACK TO DATABASE (ACTIVETRACK, TRACKDB);

87

CREATETRACK (OBS, LASTTRKNUM, ACTIVETRACK);

-- Default is UNKNOWN, so don't change if UNKNOWN

if TRKCAT /= TRACKPKG.UNKNOWN then

CHANGETRACKCATEGORY (ACTIVETRACK, TRKCAT);

end if;

ADDTRACKTODBASE (ACTIVETRACK, TRACK_DB);

-- Keep OWNSHIP up-to-date

if TRACK ID NUMBER (ACTIVE TRACK) = 0 then

OWNSHIP := ACTIVETRACK;

end if;

end;

or

...................... DELETE TRACK ANDSEND TO HISTORY

accept DELETETRACKANDSEND TO HISTORY

(TRKNUM : in NATURAL) do

FINDTRACKINDBASE (TRKNUM, ACTIVETRACK, TRACK_DB);

DROPTRACKFROMDBASE (TRACKDB);

-- Set OWNSHIP as the ACTIVE TRACK following a deletion

FINDTRACKINDBASE (0, ACTIVETRACK, TRACKDB);

end;

or

......................... ADD TRACK OBSERVATION

accept ADDTRACKOBSERVATION

(TRKNUM : in NATURAL;

OBS : in GLOBALCBSERVATION) do

FINDTRACKINDBASE (TRKNUM, ACTIVETRACK, TRACK DB);

ADDTRACKOBSERVATION (ACTIVE-TRACK, OBS);

-- Keep OWNSHIP up-to-date

88

if TRACK ID NUMBER (ACTIVE TRACK) = 0 then

OWNSHIP := ACTIVETRACK;

end if;

end;

or

........................ ADDTRACKOBSERVATION

accept ADDTRACKOBSERVATION

(TRKNUM : in NATURAL;

POS : in RELATIVEPOSITION) do

FINDTRACKINDBASE (TRKNUM, ACTIVETRACK, TRACKDB);

-- Convert the RELATIVE POSITION observation to a GLOBAL OBSERVATION

OBS := MAKEGLOBALOBSERVATION (OWNSHIP, ACTIVETRACK, POS);

ADDTRACKOBSERVATION (ACTIVE TRACK, OBS);

end;

or

.......................... SETTRACKIDENTITY

accept SETTRACKIDENTITY

(TRKNUM in NATURAL;

TID : in IDENTITYTYPE) do

FINDTRACK IN DBASE (TRKNUM, ACTIVE TRACK, TRACKDB);

SETTRACKIDENTITY (ACTIVETRACK, TID);

end;

or

............................. SET_ AMPL_ INFO

accept SETAMPLINFO

(TRKNUM : in NATURAL;

AMP : in STRING) do

FINDTRACK IN DBASE (TRKNUM, ACTIVETRACK, TRACKDB);

89

-- Convert STRING to a VSTRING (variable STRING

VS2 := VSTR (AMP);

SETAMPLINFO (ACTIVETRACK, VS2);

end;

or

.......................... SET PLATFORM CLASS

accept SET PLATFORM CLASS

(TRKNUM in NATURAL;

PC : in STRING) do

FINDTRACKINDBASE (TRKNUM, ACTIVETRACK, TRACKDB);

-- Convert STRING to a VSTRING (variable STRING

VS1 := VSTR (PC);

SETPLATFORMCLASS (ACTIVETRACK, VSI);

end;

or

............................. SET_ VESSEL_ NAME

accept SETVESSELNAME

(TRKNUM : in NATURAL;

VES : in STRING) do

FINDTRACKINDBASE I TRKNUM, ACTIVETRACK, TRACKDB);

-- Convert STRING to a VSTRING (variable STRING

VS1 := VSTR (VES);

SETVESSELNAME (ACTIVE-TRACK, VS1)

end;

or

90

............................ SETALTITUDE

accept SETALTITUDE

(TRKNUM : in NATURAL;

ALT : in DISTANCE) do

FINDTRACKINDBASE (TRKNUM, ACTIVE TRACK, TRACKDB);

SETALTITUDE (ACTIVETRACK, ALT);

end;

or

............................ GET_ CONTROL

accept GETCONTROL

(TRKNUM : in NATURAL;

CON : out CONTROLTYPE) Jo

FINDTRACKINDBASE (TRKNUM, ACTIVE TRACK, TRACKDB);

CON := CONTROL (ACTIVE TRACK);

end;

or

............................. SET_ CONTROL

accept SETCONTROL

(TRKNUM : in NATURAL;

CON : in CONTROLTYPE) do

FINDTRACKINDBASE (TRKNUM, ACTIVE-TRACK, TRACKDB);

SETCONTROL (PCTIVETRACK, CON);

end;

or

.......................... CHANGE TRACKCATEGORY

accept CHANGETRACKCATEGORY

(TRKNUM : in NATURAL;

CAT : in TRACKCATEGORY) do

91

FINDTRACKINDBASE (TRKNUM, ACTIVETRACK, TRACKDB);

CHANGETRACKCATEGORY (ACTIVETRACK, CAT);

end;

or

....................... BUILD WAYPOINTSPECIAL POINT

accept BUILDWAYPOINTSPECIALPOINT

(POS in GLOBAL POSITION;

TYME in ABSOLUTETIME) do

-- Restore previous ACTIVETRACK to TRACKDATABASE before creating

-- new one

RESTOREALTEREDTRACK TO DATABASE (ACTIVETRACK, TRACKDB);

OBS.POSITION := POS;

OBS.OBSERVATIONTIME TYME;

OBS.COURSEANDSPEED MAKECARTESIANVECTOR2 (0.0, 0.0);

CREATETRACK (O5E, LASTTRK NUM, OTHERTRACK);

-- Changes TRACK CATEGORY to SPECIALPOINT, WAYPOINT & fills

-- waypoint data

BUILDWAYPOINTSPECIALPOINT (OTHERTRACK, POS, TYME):

ACTIVETRACK := OTHERTRACK;

ADDTRACK TO DBASE (ACTIVETRACK, TRACK DB);

end;

or

........................ BUILDNAVHAZARDSPECIALPOINT

accept BUILD_NAVHAZARDSPECIALPOINT

j OBS : in GLOBAL OBSERVATION) do

-- Restore previous ACTIVETRACK to TRACKDATABASE before creating

-- new one

RESTOREALTEREDTRACKTODATABASE (ACTIVETRACK, TRACKDB);

92

CREATETRACK (OBS, LASTTRKNUM, OTHERTRACK);

-- Changes TRACKCATEGORY to SPECIALPOINT, NAVHAZARD & fills

-- nay hazard data

BUILD NAV HAZARDSPECIAL POINT (OTHER TRACK);

ACTIVETRACK := OTHERTRACK;

ADDTRACKTODBASE (ACTIVE_TRACK, TRACKDB);

end;

or

......................... BUILDGENERALSPECIALPOINT

accept BUILDGENERALSPECIALPOINT

OBS : in GLOBALOBSERVATION) do

-- Restore previous ACTIVETRACK to TRACKDATABASE before creating

-- new one

RESTOREALTEREDTRACKTODATABASE (ACTIVETRACK, TRACKDB);

CREATETRACK (OBS, LASTTRKNUM, OTHERTRACK);

-- Changes TRACK CATEGORY to SPECIALPOINT, GENERAL

BUILDGENERALSPECIAL POINT (OTHER TRACK);

ACTIVE TRACK := OTHERTRACK;

ADDTRACKTODBASE (ACTIVETRACK, TRACKDB);

end;

or

................................ BU ILD_ PATH

accept BUILDPATH

PTS : in WAYPOINTARRAY) do

-- Restore previous ACTIVETRACK to TRACKDATABASE before creating

-- new one

RESTOREALTEREDTRACK TO DATABASE (ACTIVETRACK, TRACKDB);

93

-- Use 1st path waypoint as last observation's position

OBS.POSITION := PTS (0).POSITION;

OBS.OBSERVATION TIME NOW;

OBS.COURSEANDSPEED MAKE CARTESIAN VECTOR_2 (0.0, 0.0);

CREATETRACK (OBS, LASTTRKNUM, OTHERTRACK);

-- Changes TRACKCATEGORY to PATH & fills points

BUILDPATH (OTHERTRACK, PTS);

ACTIVETRACK := OTHERTRACK;

ADDTRACKTODBASE (ACTIVETRACK, TRACKDB);

end;

or

....................... BUILL. ABSOLUTE CIRCLE REGION

accept BUILD ABSOLUTE CIRCLE REGION

(RAD : in DISTANCE;

CTR : in GLOBALPOSITION) do

-- Restore previous ACTIVETRACK to TRACKDATABASE before creating

-- new one

RESTOREALTERED_TRACKTODATABASE (ACTIVETRACK, TRACK DB);

-- Use circle center position as last observation's position

OBS.POSITION := CTR;

OBS.OBSERVATION TIME NOW;

OBS.COURSE AND SPEED MAKE CARTESIAN VECTOR_2 (0.0, 0.0);

CREATETRACK (OBS, LASTTRKNUM, OTHERTRACK);

-- Changes TRACK CATEGORY to REGION, CIRCLE, ABSOLUTE & fills

-- circle data

BUILDABSCLUTECIRCLEREGION (OTHERTRACK, RAD, CTR);

ACTIVETRACK := OTHERTRACK;

ADDTRACKTODBASE (ACTIVETRACK, TRACKDB);

end;

94

or

......................... BUILD RELATIVE CIRCLE REGION

accept BUILD RELATIVE CIRCLEREGION

(RAD : in DISTANCE;

CTR : in RELATIVE POSITION;

REFTRKNUM : in NATURAL) do

-- Get region's reference TRACK's position

FINDTRACKINDBASE (REFTRKNUM, ACTIVETRACK, TRACKDB);

OBS := MOST RECENTOBSERVATION (ACTIVETRACK);

CREATETRACK (6BS, LASTTRKNUM, OTHERTRACK);

-- Changes TRACK CATEGORY to REGION, CIRCLE, RELATIVE & fills

-- circle data

BUILDRELATIVECIRCLEREGION (OTHERTRACK, RAD, CTR, REFTRKNUM);

ACTIVETRACK := OTHERTRACK;

ADDTRACKTODBASE (ACTIVETRACK, TRACKDB);

end;

or

............ BUILD ABSOLUTE POLYGONREGION

accept BUILD ABSOLUTE POLYGON REGION

AVA : in ABSOLUTEVERTEXARRAY) do

-- Restore previous ACTIVE TRACK to TRACKDATABASE before creating

-- new one

RESTOREALTEREDTRACKTODATABASE (ACTIVETRACK, TRACKDB);

-- Use 1st polygon point as last observation's position

OBS.POSITION := AVA (0);

OBS.OBSERVATION TIME NOW;

OBS.COURSEANDSPEED MAKECARTESIANVECTOR_2 (0.0, 0.0);

CREATETRACK (OBS, LASTTRKNUM, OTHERTRACK);

95

-- Changes TRACKCATEGORY to REGION, POLYGON, ABSOLUE & fills

-- vertex points

BUILDABSOLUTEPOLYGON REGION (OTHER-TRACK, AVA);

ACTIVE TRACK := OTHER TRACK;

ADDTRACKTODBASE (ACTIVE-TRACK, TRACKDB);

end;

or

........................ BUILDRELATIVEPOLYGONREGION

accept BUILDRELATIVEPOLYGONREGION

(RVA : in RELATIVE VERTEXARRAY;

REF TRK NUM : in NATURAL) do

-- Get region's reference TRACK's position

FINDTRACKINDBASE (REFTRKNUM, ACTIVETRACK, TRACKDB);

OBS := MOSTRECENT OBSERVATION (ACTIVETRACK);

CREATETRACK (OBS, LASTTRKNUM, OTHERTRACK);

-- Changes TRACK CATEGORY to REGION, POLYGON, RELATIVE & fills

-- vertex points

BUILDRELATIVEPOLYGONREGION (OTHERTRACK, RVA, REFTRKNUM);

ACTIVETRACK := OTHERTRACK;

ADDTRACK TO DBASE (ACTIVE-TRACK, TRACKDB);

end;

or

............................... CHANGE_ COURSE

accept CHANGECOURSE

(TRKNUM : in NATURAL;

CRS : in ANGLE) do

FINDTRACKINDBASE (TRKNUM, ACTIVETRACK, TRACKDB);

CHANGECOURSE (ACTIVE-TRACK, CRS);

96

end;

or

............................... CHANGE_ SPEED

accept CHANGE SPEED

(TRKNUM : in NATURAL;

SPD : in SPEED) do

FINDTRACKINDBASE (TRKNUM, ACTIVE-TRACK, TRACKDB);

CHANGESPEED (ACTIVETRACK, SPD);

end;

or

........................... CHANGE GLOBAL POSITION

accept CHANGEGLOBALPOSITION

i TRKNUM : in NATURAL;

POS : in GLOBALPOSITION) do

FINDTRACKINDBASE (TRKNUM, ACTIVETRACK, TRACKDB);

CHANGEGLOBALPOSITION (ACTIVE-TRACK, POS);

end;

or

...................... MAKEDISTANCEATOMICFILTER

accept MAKEDISTANCEATOMICFILTER

(DAFATTRIBID : in DISTANCEATTRIBUTE ID;

DAFLIMIT : in DISTANCE;

DAF REF TRKNUM : in NATURAL;

DAFRELATION : in RELATIONID) do

-- Find reference TRACK in database

FINDTRACKINDBASE (DAFREFTRKNUM, ACTIVETRACK, TRACKDB);

MAKEDISTANCEATOMICFILTER (DAFATTRIB_ID, DAFLIMIT,

ACTIVETRACK, DAFRELATION, DISTATFILT);

ADDATOMICFILTER TO AND FILTER (DISTATFILT, AND FILTUR);

97

end;

or --
..................... MAKETRACK CATEGORYATOMICFILTER

accept MAKETRACKCATEGORYATOMICFILTER

(TCAF DESIRED TRK CAT : in TRACKCATEGORY;

TCAFEQREL ID : in EQUALITYRELATIONID) do

MAKETRACKCATEGORYATOMICFILTER (TCAFDESIREDTRKCAT,

TCAFEQRELID, TRKCATATFILT };

ADDATOMICFILTERTOANDFILTER (TRKCATATFILT, ANDFILTUR);

end;

or

.................. MAKEPLATFORMIDENTITYATOMICFILTER

accept MAKE PLATFORMIDENTITYATOMIC FILTER

(PIAFDESIREDPLATID : in IDENTITYTYPE;

PIAFEQRELID : in EQUALITYRELATIONID) do

MAKE PLATFORMIDENTITYATOMICFILTER (PIAFDESIREDPLATID,

PIAF EQRELID, PLTFM ID AT FILT);

ADDATOMICFILTERTOANDFILTER (PLTFMID AT FILT, ANDFILTUR);

end;

or

........................... ADDANDFILTERTOFILTER

accept ADDANDFILTERTOFILTER do

ADDANDFILTERTOFILTER (ANDFILTUR, FILTUR);

end;

or

................................. CLEAR_ FILTER

98

accept CLEARFILTER do

CLEARFILTER (FILTUR);

end;

or

................................. WRITE FILTER

accept WRITEFILTER do

WRITEFILTER (FILTUR);

end;

or

................................ FILL TACPLOT

accept FILL TACPLOT do

EMPTYTACPLOT;

-- For all TRACKS in the database

for I in 0 .. LASTTRKNUM loop

FINDTRACKINDBASE (I, ACTIVE-TRACK, TRACKDB);

-- If TRACK is found

if TRACKDATABASEPKG.ACTIVETRACK (TRACKDB) then

-- Things get tricky when the TRACK is a RELATIVE REGION.

-- We need to retrieve the reference TRACK's position to

-- calculate the REGION's current position

if TRKCATEGORY (ACTIVETRACK) = REGION then

if REGIONPLCMT (ACTIVETRACK) = RELATIVETOTRACK then

-- Store the REGION's track number

TNUM TRACKIDNUMBER (ACTIVETRACK);

if REGIONCATEG (ACTIVETRACK) = CIRCLE then

99

-- Find the reference's position

FINDTRACKINDBASE (RELATIVECIRCLEREFERENCETRKNUM

(ACTIVETRACK), ACTIVETRACK, TRACKDB);

POS CURRENTPOSITION (ACTIVETRACK);

OBS MOSTRECENTOBSERVATION (ACTIVETRACK);

-- Make the REGION the ACTIVETRACK again

FINDTRACK IN DBASE (TNUM, ACTIVETRACK, TRACKDB);

-- Update the REGION's reference position

UPDATERELATIVECIRCLEREFERENCETRKPOS (ACTIVETRACK,

POS);

else -- RELATIVE POLYGON

-- Find the reference's position

FINDTRACKINDBASE (RELATIVEREGIONREFERENCETRKNUM

(ACTIVETRACK), ACTIVETRACK, TRACKDB);

POS CURRENTPOSITION (ACTIVETRACK);

OBS MOSTRECENTOBSERVATION (ACTIVETRACK);

-- Make the REGION the ACTIVETRACK again

FINDTRACKINDBASE (TNUM, ACTIVE_TRACK, TRACKDB);

-- Update the REGION's reference position

UPDATERELATIVEREGIONREFERENCETRK_POS (ACTIVETRACK,

POS);

end if;

-- If the RELATIVE REGION's course and speed don't match

-- the reference's, add an observation

if MOSTRECENTOBSERVATION (ACTIVETRACK) /= OBS then

ADD_TRACKOBSERVATION (ACTIVETRACK, OBS);

end if;

end if;

end if;

-- Test the TRACK against the FILTER

PASSEDFILTER := TEST FILTER (FILTUR, ACTIVE TRACK);

100

-- If TRACK passes FILTER, add it to TACPLOT

if PASSEDFILTER then

ADDTACPLOTELEMENT (ACTIVETRACK);

end if;

end if;

end loop;

end;

or

accept SETSENSORSTATUS

(SENSER : in SENSOR;

SENSERSTATUS : in STATUS) do

SETSTATUS (SYSTUMSTATUS, SENSER, SENSERSTATUS);

end;

or

accept GETSENSORSTATUS

(SENSER : in SENSOR;

SENSERSTATUS out STATUS) do

SENSERSTATUS GETSTATUS (SYSTUMSTATUS, SENSER);

end;

or

accept SHUTDOWN do

PURGEENTIREDBASE (TRACKDB);

WRITETRACKARCHIVESTO TEXT FILE;

WRITEFILTERARCHIVESTOTEXTFILE;

abort GPSUPDATETASK;

101

end;

end select;

end loop;

end INTEGRATIONSYSTEM;

............................. GPSUPDATE TASK

task body GPS_UPDATETASK is

SECONDS : constant DURATION := 1.0;

-- Update required every 4 seconds

INTERVAL : constant DURATION := 4 * SECONDS;

NEXTGPSUPDATE : CALENDAR.TIME := CALENDAR.CLOCK + INTERVAL;

OBS : GLOBALOBSERVATION;

SENSERSTATUS : STATUS;

begin

loop

delay DURATION (NEXT GPS UPDATE - CALENDAR.CLOCK);

INTEGRATIONSYSTEM.GETSENSORSTATUS (GPS, SENSERSTATUS);

if SENSERSTATUS = UP then

-- Get OWNSHIP's position from GPS

OBS := GETGPSUPDATE;

INTEGRATIONSYSTEM.ADD TRACKOBSERVATION (0, OBS);

end if;

NEXTGPSUPDATE := NEXT GPSUPDATE + INTERVAL;

end loop;

exception

102

when STATUSERROR I CONSTRAINTERROR =>

SET STATUS (SYSTUMSTATUS, GPS, DOWN I;

end GPSUPDATETASK;

............................... LINK_ CYCLE

task body LINKCYCLE is

SECONDS : constant DURATION := 1.0;

-- Update required every 4 seconds

INTERVAL : constant DURATION := 4 SECONDS;

NEXTLINKUPDATE : CALENDAR.TIME CALENDAR.CLOCK + INTERVAL;

begin

loop

accept STARTLINKUPDATE;

NEXT LINKUPDATE := NEXT LINKUPDATE + INTERVAL;

delay DURATION (NEXTLINKUPDATE - CALENDAR.CLOCK);

end loop;

end LINKCYCLE;

. ...

begin

null;

end INTEGRATIONSYSTEMPKG;

103

APPENDIX C

TRACK PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

-- Description : Defines abstract data type TRACK and associated

-- functions and procedures

with ANGLE PKG, SPEEDPKG, DISTANCEPKG, VELOCITYPKG,
ABSOLUTE_TIMEPKG,

GLOBALPOSITIONPKG, GLOBALOBSERVATIONPKG, VSTRINGS,

RELATIVEPOSITIONPKG, DIRECTIO;

use ANGLEPKG, SPEEDPKG, DISTANCEPKG, VELOCITYPKG, ABSOLUTETIMEPKG,

GLOBALPOSITIONPKG, GLOBALOBSERVATIONPKG, RELATIVEPOSITIONPKG;

package TRACKPKG is

-- Longest length of AMPLINFO

AMPLEN : constant INTEGER := 80;

-- Longest length of VNAME & SCLASS/ACLASS

VESANDCLASSLEN : constant INTEGER := 80;

-- Maximum allowable points in a path

MAXPTSINPATH : constant NATURAL := 50;

104

-- Maximum number of history points of a TRACK to be displayed to the
user

MAXHISTORYPTS : constant NATURAL := 500;

-- Maximum allowable number of vertices in a polygon REGION TRACK

MAXVERTICESINPOLYGON : constant NATURAL := 20;

subtype NUM PATH PTS is

NATURAL range 0 .. MAX PTSINPATH;

subtype NUMHISTORY PTS is

NATURAL range 0 .. MAXHISTORYPTS;

subtype NUM VERTICES is

NATURAL range 0 .. MAXVERTICESIN POLYGON;

-- TRACK history points

type GLOB OBS ARRAY is

array (NUMHISTORYPTS range <>) of GLOBAL-OBSERVATION;

type WAYPOINTTYPE is

record

POSITION GLOBALPOSITION;-- Position of waypoint

TIMETO ABSOLUTETIME;-- Time tc arrive at waypoint

end record;

type WAYPOINT ARRAY is

array (NUMPATH_PTS range <>) of WAYPOINTTYPE;

type RELATIVEVERTEXARRAY is

array (NUMVERTICES range <>) of RELATIVEPOSITION;

type ABSOLUTE VERTEX ARRAY is

array (NUMVERTICES range <>) of GLOBALPOSITION;

type TRACK is private;

type TRACK CATEGORY is

(UNKNOWN, SURFACEPLATFORM, SUBSURFACEPLATFORM, AIRPLATFORM,

REGION, PATH, SPECIALPOINT, MANINWATER, NONDISPLAYABLE);

105

type IDENTITYTYPE is

(FRIENDLY, HOSTILE, NEUTRAL, UNKNOWN);

type CONTROLTYPE is

(LINK, LOCAL);

type SPECIAL POINTCATEGORY is

GENERAL, WAYPOINT, NAVHAZARD);

type REGIONCATEGORY is

(CIRCLE, POLYGON);

type REGIONPLACEMENT is

(ABSOLUTE, RELATIVETOTRACK);

package AMPSTR is new VSTRINGS (AMP LEN);

use AMPSTR;

package V ANDCSTR is new VST1!]GS (VESANDCLASSLEN);

use VANDCSTR;

-- Creates a TRACK with its first observation

procedure CREATETRACK

(GO : in GLOBALOBSERVATION;

LASTTRACKID : in out NATURAL;

TRK : out TRACK);

-- Deletes TRACK and sends its TRACK TYPE data, as well as its

-- GLOBALOBSERVATIONs to secondary storage

procedure DELETE TRACK ANDSENDTOHISTORY

TRK : in out TRACK);

-- Creates TRK FILE & OBSFILE

procedure CREATETRACKFILES;

-- Retrieves archived TRACK info from secondary storage. Reformats it
into

-- a human readable format and writes it to a secondary storage text
file.

procedure WRITETRACKARCHIVESTOTEXTFILE;

-- Adds an observation of a TRACK to an existing TRACK object

106

procedure ADD TRACK OBSERVATION

TRK : in out TRACK;

GO : in GLOBALOBSERVATION);

-- Changes/sets TRACK's IDENTITY TYPE

procedure SET TRACK IDENTITY

TRK : in out TRACK;

TID : in IDENTITYTYPE);

-- Changes/sets TRACK's AMPLIFYING INFO

procedure SET AMPL INFO

TRK : out TRACK;

AMP : in AMPSTR.VSTRING);

-- Changes/sets TRACK's CLASS

procedure SET PLATFORMCLASS

TRK : in out TRACK;

PC : in V ANDCSTR.VSTRING);-- Class name

-- Changes/sets TRACK's VESSEL NAME

procedure SET VESSEL NAME

TRK : in out TRACK;

VES : in V ANDCSTR.VSTRING);-- Vessel name

-- Changes/sets TRACK's ALTITUDE

procedure SET ALTITUDE

TRK : in out TRACK;

ALT : in DISTANCE);-- Altitude in yards

-- Changes/sets TRACK's CONTROLTYPE

procedure SET CONTROL

TRK : out TRACK;

CON : in CONTROLTYPE);-- LINK/LOCAL control

-- Changes TRACK's TRACK CATEGORY

procedure CHANGETRACKCATEGORY

(TRK1 : in out TRACK;

CAT : in TRACKCATEGORY);

-- Builds a WAYPOINT

procedure BUILDWAYPOINT SPECIAL POINT

107

TRK : in out TRACK;

POS in GLOBALPOSITION;

TYME in ABSOLUTETIME);-- Time to arrive at waypoint

-- Builds a NAV HAZARD

procedure BUILDNAVHAZARDSPECIALPOINT

TRK : in out TRACK);

-- Builds a GENERAL SPECIAL POINT

procedure BUILDGENERALSPECIAL POINT

TRK : in out TRACK);

-- Builds a PATH

procedure BUILD PATH

(TRK : in out TRACK;

PTS : in WAYPOINTARRAY);-- Points on the path

-- Builds an ABSOLUTE CIRCLE REGION whose center is an absolute

-- GLOBAL POSITION

procedure BUILD ABSOLUTECIRCLE REGION

(TRK : in out TRACK;

RAD in DISTANCE;-- Radius of circle

CTR in GLOBALPOSITION);-- Center of circle

- Builds a CIRCLE REGION whose center is relative to a reference TRACK

procedure BUILD RELATIVECIRCLEREGION

(TRK : in out TRACK;

RAD in DISTANCE;-- Radius of circle

CTR in RELATIVEPOSITION;-- Center of circle relative

-- to reference TRACK

REF in NATURAL); -- Reference track number

-- Builds an ABSOLUTE POLYGON REGION whose vertices are absolute

-- GLOBAL POSITIONs

procedure BUILD ABSOLUTEPOLYGONREGION

(TRK : in out TRACK;

AVA : in ABSOLUTEVERTEXARRAY

-- Builds a POLYGON REGION whose vertices are relative to a reference
TRACK

procedure BUILD RELATIVE POLYGON REGION

108

TRK : in out TRAC7';

RVA in RELATIVE VERTEXARRAY;

REF in NATURAL); -- reference track numter

-- Returns an array of the TRACK's history points as reflected in the

-- TRACK DATABASE

procedure TRACK HISTORY

(TRK : in TRACK;

HISTORYPTSARRAY : in out GLOBOBSARRAY);

-- Changes the TRACK's course and adds a new observation

-- Usually only invoked on OWNSHIP's TRACK

procedure CHANGECOURSE

(TRK : in out TRACK;

CRS : in ANGLE);

-- Changes the TRACK's speed and adds a new observation

-- Usually only invoked on OWNSHIP's TRACK

procedure CHANGE SPEED

(TRK : in out TRACK;

SPD : in SPEED);

-- Changes TRACK's position without recomputing course and speed

-- Used as a correction measure

procedure CHANGEGLOBALPOSITION

(TRK : in out TRACK;

GP : in GLOBALPOSITION);

-- Returns TRACK number as generated by the system

function TRACK ID NUMBER

TRK : TRACK) return NATURAL;

-- Returns TRACK's IDENTITY TYPE

function TRACK IDENTITY

TRK : TRACK) return IDENTITYTYPE;

-- Returns TRACK's AMPLIFYING INFO

function AMPL INFO

TRK : TRACK) return AMP STR.VSTRING;

Returns TRACK's CLASS

109

function PLATFORMCLASS

TRK : TRACK) return VANDCSTR.VSTRING;

-- Returns TRACK vessel's name

function VESSELNAME

TRK : TRACK) return VANDCSTR.VSTRING;

-- Returns TRACK's TRACKCATEGORY

function TRK CATEGORY

TRK : TRACK) return TRACKCATEGORY;

-- Returns TRACK's CONTROL TYPE

function CONTROL

TRK : TRACK) return CONTROLTYPE;

-- Returns TRACK's true course as reported/calculated in its

-- MOST RECENT OBSERVATION

function TRUECOURSE

TRK : TRACK) return ANGLE;

-- Returns TRACK's true speed as reported/calculated in its

-- MOST RECENT OBSERVATION

function TRUE SPEED

TRK : TRACK) return SPEED;

-- Returns TRACK's true course and speed as reported/calculated in its

-- MOSTRECENTOBSERVATION

function TRUE VELOCITY

TRK : TRACK) return VELOCITY;

-- Returns target TRACK's relative motion (course and speed) as seen

-- from the reference TRACK

function TARGET RELATIVE VELOCITY

(REFERENCE _TRACK,

TARGETTRACK : TRACK) return VELOCITY;

-- Returns target TRACK's relative course as seen from the reference
TRACK

function RELATIVE COURSE

(REFERENCETRACK,

TARGETTRACK : TRACK) return ANGLE;

110

-- Returns target TPJtK's relative speed as seen from the reference

TRACK

function RELATIVE SPEED

(REFERENCETRACK,

TARGETTRACK : TRACK) return SPEED;

-- Returns TRACK's altitude in yards

function ALTITUDE

TRK : TRACK) return DISTANCE;

-- Returns TRACK's current DR (Dead Reckoning) position as calculated

-- from its MOSTRECENTOBSERVATION (last known position, course,
speed,

-- and time

function CURRENT POSITION

TRK : TRACK) return GLOBALPOSITION;

-- Returns bearing to target TRACK from reference TRACK with respect to

-- reference TRACK's heading (not true north

function RELATIVE BEARING

(REFERENCETRACK,

TARGETTRACK : TRACK) return ANGLE;

-- Returns bearing to target TRACK from reference TRACK with respect to

true

-- north

function TRUE BEARING

(REFERENCE TRACK,

TARGETTRACK : TRACK) return ANGLE;

-- Returns TRACK's last entered GLOBALOBSERVATION

function MOST RECENT OBSERVATION

TRK : TRACK) return GLOBALOBSERVATION;

-- Returns category of SPECIAL POINT TRACK

function SPEC POINT CATEGORY

TRK : TRACK) return SPECIALPOINT CATEGORY;

-- Returns a GLOBAL OBSERVATION based on TRACK's relative position to

reference TRACK. The TRACK's course and speed are calculated based

-- on its new position and its MOSTRECENTOBSERVATION

I]

function MAKE GLOBALOBSERVATION

(OWNSHIP TRACK : TRACK;

TARGET TRACK TRACK;

TGTREL_POS RELATIVEPOSITION) return GLOBALOBSERVATION;

-- Returns category of REGION TRACK

function REGION CATEG

TRK : TRACK) return REGIONCATEGORY;

-- Returns method of REGION placement (ABSOLUTE, RELATIVETOTRACK

function REGION PLCMT

TRK : TRACK) return REGIONPLACEMENT;

-- Returns radius of CIRCLE REGION in yards

function CIRCLE RADIUS

TRK : TRACK) return DISTANCE;

-- Returns location of ABSOLUTE CIRCLE REGION center

function ABS CIRCLE CENTER

TRK : TRACK) return GLOBALPOSITION;

Returns bearing and range from reference TRACK to RELATIVE CIRCLE
REGION

-- center

function REL CIRCLE CENTER

TRK : TRACK) return RELATIVE-POSITION;

-- Returns all waypoints of a PATH

function PATH POINTS

TRK : TRACK) return WAYPOINTARRAY;

-- Return location of and time to waypoint

function WAYPNT

TRK : TRACK) return WAYPOINTTYPE;

-- Returns all vertices (bearings and ranges from reference TRACK) of
a

-- RELATIVE POLYGON REGION

function RELREGIONVERTICES

TRK : TRACK) return RELATIVEVERTEXARRAY;

112

-- Returns all vertices (earth coordinates) of an ABSOLUTE POLYGON

REGION

function ABS REGION VERTICES

TRK : TRACK) return ABSOLUTEVERTEXARRAY;

-- Returns reference TRACK number of a RELATIVE CIRCLE REGION

function RELATIVE CIRCLEREFERENCETRKNUM

TRK : TRACK) return NATURAL;

-- Returns the position of the reference TRACK of a RELATIVE CIRCLE

REGION

function RELATIVE CIRCLEREFERENCETRKPOS

TRK : TRACK) return GLOBALPOSITION;

-- Returns reference TRACK number of a RELATIVE POLYGON REGION

function RELATIVE REGIONREFERENCE TRK NUM

TRK : TRACK) return NATURAL;

-- Returns the position of the reference TRACK of a RELATIVE POLYGON
REGION

function RELATIVE REGION REFERENCETRKPOS

TRK : TRACK) return GLOBALPOSITION;

-- Updates position of RELATIVE CIRCLE REGION's reference TRACK

procedure UPDATE RELATIVECIRCLEREFERENCETRKPOS

(TRK : in out TRACK;

GP : in GLOBALPOSITION);

-- Updates position of RELATIVE POLYGON REGION's reference TRACK

procedure UPDATE RELATIVEREGIONREFERENCETRKPOS

(TRK : in out TRACK;

GP : in GLOBALPOSITION);

pragma INLINE (CREATETRACK, DELETE TRACK AND SEND TO HISTORY,

CREATETRACKFILES, WRITETRACKARCHIVESTOTEXTFILE,

ADD TRACKOBSERVATION, SETTRACK IDENTITY, SET AMPL INFO,

SETPLATFORMCLASS, SETVESSELNAME, SETALTITUDE,

SETCONTROL, CHANGETRACKCATEGORY,

BUILDWAYPOINTSPECIALPOINT, BUILDNAVHAZARDSPECIALPOINT,

BUILDGENERALSPECIALPOINT, BUILD-PATH,

BUILDABSOLUTECIRCLEREGION, BUILDRELATIVECIRCLEREGION,

BUILDABSOLUTEPOLYGONREGION, BUILDRELATIVEPOLYGONREGION,

113

TRACKHISTORY, CHANGECOURSE, CHANGESPEED,

CHANGEGLOBALPOSITION, TRACKIDNUMBER, TRACKIDENTITY,

AMPLINFO, PLATFORMCLASS, VESSELNAME, TRKCATEGORY, CONTROL,

TRUECOURSE, TRUESPEED, TRUEVELOCITY,

TARGETRELATIVEVELOCITY, RELATIVECOURSE, RELATIVESPEED,

ALTITUDE, CURRENTPOSITION, RELATIVEBEARING, TRUEBEARING,

MOSTRECENTOBSERVATION, SPECPOINTCATEGORY,

MAKEGLOBALOBSERVATION, REGION_CATEG, REGIONPLCMT,

CIRCLE_RADIUS, ABSCIRCLECENTER, RELCIRCLECENTER,

PATHPOINTS, WAYPNT, RELREGIONVERTICES, ABSREGIONVERTICES,

RELATIVECIRCLEREFERENCETRKNUM,

RELATIVECIRCLEREFERENCE_TRK_POS,

RELATIVEREGIONREFERENCETRKNUM,

RELATIVEREGIONREFERENCETRKPOS,

UPDATERELATIVECIRCLEREFERENCETRKPOS,

UPDATERELATIVEREGIONREFERENCETRKPOS);

private

type SPECIALPOINT TYPE

(S_P_CAT : SPECIALPOINTCATEGORY GENERAL) is

record

case SPCAT is

when WAYPOINT =>

WAYPT : WAYPOINTTYPE;

when others =>

null;

end case;

end record;

type PATHTYPE

(PTS NUMPATHPTS := 0) is

record

WAYPTS WAYPOINTARRAY (0 .. PTS);

end record;

type RELVERTEX TYPE

(PTS : NUMVERTICES := 0) is

record

VERTICES : RELATIVEVERTEXARRAY (0 PTS);

end record;

114

type ABS VERTEXTYPE

(PTS : NUMVERTICES := 0) is

record

VERTICES : ABSOLUTEVERTEXARRAY (0 .. PTS);

end record;

type REGIONTYPE

(REGCAT : REGIONCATEGORY := CIRCLE;

REGPLACEMT : REGIONPLACEMENT := ABSOLUTE) is

record

case REG CAT is

when CIRCLE =>

RADIUS : DISTANCE;-- Circle radius

case REG PLACEMT is

when ABSOLUTE =>

ABSCENTER : GLOBALPOSITION;-- Circle center posit

when RELATIVE TO TRACK =>

RELCENTER : RELATIVEPOSITION;-- Circle center posit

-- relative to ref trk

REFERENCE TRACK1 NATURAL; -- Ref track number

REFTRKPOSITIONI GLOBALPOSITION;-- Ref track position

end case;

when POLYGON =>

case REG PLACEMT is

when ABSOLUTE =>

ABSVERTICES ABSVERTEXTYPE;-- Vertex positions

when RELATIVE TO TRACK =>

RELVERTICES RELVERTEXTYPE;-- Vertex positions

-- relative to ref trk

REFERENCE TRACK2 NATURAL; -- rTef track number

REFTRKPOSITION2 GLOBALPOSITION;-- Ref track position

end case;

end case;

end record;

type TRACK TYPE

(CATEGORY : TRACKCATEGORY := UNKNOWN) is

record

TRACKID NATURAL;-- Track number

AMPL INFO AMPSTR.VSTRING := AMPSTR.NUL;

115

CONTROL : CONTROLTYPE := LOCAL;

case CATEGORY is

when SURFACEPLATFORM I SUBSURFACEPLATFORM =>

SCLASS : VANDCSTR.VSTRING;-- Vessel class name

SID : IDENTITYTYPE := UNKNOWN;

VNAME : VANDCSTR.VSTRING;-- Vessel's name

when AIR PLATFORM =>

ACLASS : VANDCSTR.VSTRING;-- Aircraft class name

AID : IDENTITYTYPE := UNKNOWN;

ALTITUDE : DISTANCE;

when SPECIAL POINT =>

S_PTYPE : SPECIALPOINTTYPE;

when PATH =>

P_TYPE : PATHTYPE;

when REGION =>

RTYPE : REGIONTYPE;

when others =>

null;

end case;

end record;

subtype SURFACETRACKTYPE is TRACKTYPE (SURFACEPLATFORM);

subtype SUBSURFACETRACKTYPE is TRACKTYPE (SUBSURFACEPLATFORM);

subtype AIRTRACKTYPE is TRACKTYPE (AIRPLATFORM);

subtype REGIONTRACKTYPE is TRACKTYPE (REGION);

subtype PATHTRACK TYPE is TRACKTYPE (PATH);

subtype SPECIALPOINTTRACKTYPE is TRACKTYPE (SPECIALPOINT);

subtype MANINWATERTRACKTYPE is TRACKTYPE (MANINWATER);

subtype NONDISPLAYABLETRACKTYPE is TRACKTYPE (NONDISPLAYABLE);

-- Linked list structure that stores a TRACK's GLOBALOBSERVATIONs

type TRACK_OBS;

type TRACKOBSPTR is access TRACKOBS;

type TRACKOBS is

record

GLO OBS GLOBAL-OBSERVATION;

NEXTOBS TRACKOBSPTR;

end record;

type TRACK is

116

record

TRACKDATA : TRACKTYPE;

TRKOBS : TRACKOBSPTR;-- Pointer to first

-- observation

end record;

-- Structure used to write TRACK observations to DIRECT IO file

type TOBS is

record

T NUM : NATURAL; -- Track number

G_0 : GLOBALOBSERVATION;

end record;

package TRACK DATA OUT is new DIRECT_10 (TRACKTYPE);
package TRACK OBS OUT is new DIRECTIO (TOBS);

use TRACKDATAOUT, TRACKOBSOUT;

end TRACKPKG;

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

with UNCHECKEDDEALLOCATION, RELATIVETIMEPKG, VECTOR_2_PKG, DIRECTIO,

MATH, TEXTIO;

use RELATIVETIMEPKG, VECTOR_2_PKG, TEXTIO;

package body TRACKPKG is

................................ CREATE TRA CK

procedure CREATE TRACK

GO : in GLOBALOBSERVATION;

117

LASTTRACK ID : in out NATURAL; -- Track number (global var

TRK out TRACK) is

T_0 TRACKOBSPTR;

NEWTRK : TRACK;

begin

NEWTRK.TRACKDATA.TRACKID := LASTTRACKID;

T_0 := new TRACKOBS;

TO.GLOOBS := GO;

NEWTRK.TRKOBS := T_0;

LASTTRACKID := LASTTRACKID + 1;-- Increment for next TRACK

TRK := NEWTRK;

end CREATETRACK;

....................... DELETE TRACK AND SEND TO HISTORY

procedure DELETE TRACKANDSENDTOHISTORY

(TRK : in out TRACK) is

procedure FREEOBS is

new UNCHECKEDDEALLOCATION (TRACKOBS, TRACKOBSPTR);

TI, T2 TRACKOBSPTR;

T_DATA TRACKTYPE;

T_0 : T_OBS;

TRKFILE TRACKDATAOUT.FILETYPE;-- File for TRACKDATA

OBSFILE TRACKOBSOUT.FILETYPE;-- File for TRACK observations

TINDEX NATURAL;-- Index counter for TRKFILE

OINDEX NATURAL;-- Index counter for OBSFILE

begin

-- Open DIRECT 10 archive files

TRACKDATAOUT.OPEN (TRKFILE, INOUTFILE, "TRKFILE");

TRACKOBSOUT.OPEN (OBSFILE, INOUTFILE, "OBSFILE");

118

-- Get sizes of both files & set write indices to their sizes + 1

TINDEX NATURAL (TRACKDATAOUT.SIZE (TRKFILE)) + 1;

OINDEX NATURAL (TRACKOBSOUT.SIZE (OBSFILE) + 1;

T_DATA TRK.TRACKDATA;

-- Write TRACK DATA to file

TRACKDATAOUT.WRITE (TRKFILE, TDATA, TRACKDATAOUT.POSITIVECOUNT

TINDEX));

-- Get pointer to first TRACK observation

Ti := TRK.TRKOBS;

-- Assign TRACK number to TRACK observation node about to be written so

-- it can later be retrieved & correlated to its TRACKDATA

T_O.TNUM := T DATA.TRACKID;

-- Write all TRACK observations to file, freeing allocated memory along

-- the way

while Ti1/= null loop

T_O.GO T1.GLOOBS;

TRACKOBSOUT.WRITE (OBSFILE, T_0, TRACKOBSOUT.POSITIVECOUNT

(OINDEX));

OINDEX := 0_INDEX + 1;

T2 := T1.NEXT OBS;

FREEOBS (T1);

T1 := T2;

end loop;

TRACKDATAOUT.CLOSE (TRKFILE);

TRACKOBSOUT.CLOSE (OBSFILE);

end DELETETRACKANDSENDTOHISTORY;

.............................. CREATETRACKFILES

procedure CREATETRACKFILES is

TRKFILE TRACKDATAOUT.FILETYPE;

OBS-FILE TRACKOBSOUT.FILETYPE;

119

begin

TRACKDATAOUT.CREATE (TRKFILE, INOUTFILE, "TRKFILE");

TRACKOBSOUT.CREATE (OBSFILE, INOUTFILE, "OBSFILE");

TRACKDATAOUT.CLOSE (TRKFILE);

TRACKOBSOUT.CLOSE (OBSFILE);

end CREATETRACKFILES;

....................... WRITE_TRACKARCHIVESTOTEXTFILE

procedure WRITETRACKARCHIVESTOTEXTFILE is

T_DATA : TRACKTYPE;

T0 : T_OBS;

TRKNUM NATURAL;-- Track number

FINISHED BOOLEAN := FALSE;-- Flag to show when finished writing

TCAT : TRACKCATEGORY;

AMPINFO : AMPSTR.VSTRING;

CTL : CONTROLTYPE;

CLASS VANDCSTR.VSTRING;

NAME VANDCSTR.VSTRING;

IDENT IDENTITYTYPE;

SPECPT SPECIALPOINTCATEGORY;

GLOPOS GLOBALPOSITION;

REL POS RELATIVEPOSITION;

ABSTIME ABSOLUTETIME;

NATNUM NATURAL;

LATDIR NORTHSOUTH;

LONGDIR EASTWEST;

LATD,

LATM,

LATS : NATURAL;

LONGD,

LONGM,

LONGS : NATURAL;

Y, M, D : NATURAL;

S : FLOAT;

REGCAT REGIONCATEGORY;

REGPL REGIONPLACEMENT;

DASHES STRING (1 .. 80) OTHERS => ''

120

DOTS : STRING (1 .. 80) (OTHERS => '.');

TRKFILE TRACKDATAOUT.FILETYPE;

OBS FILE TRACKOBSOUT.FILETYPE;

TEXTFILE TEXTIO.FILETYPE;

+++++++++++++++++++++++++++++++PRINT GLOBAL POSITION+++++++++++++++++++

-- Prints TRACK observation points as earth coordinates to text file

procedure PRINTGLOBALPOSITION is

begin

GETLATITUDE (GLOPOS, LATDIR, LATD, LATM, LAT_S);

GETLONGITUDE (GLOPOS, LONGDIR, LONGD, LONG M, LONG_S);

PUT (TEXT FILE, NATURAL'IMAGE LATD));

PUT (TEXTFILE, NATURAL' IMAGE LAT_M));

PUT (TEXTFILE, NATURAL'IMAGE LAT_S));

if LATDIR = N then

PUT (TEXTFILE, "N "

else

PUT (TEXTFILE, " S "

end if;

PUT (TEXTFILE, NATURAL'IMAGE LONGD));

PUT (TEXTFILE, NATURAL'IMAGE LONGM));

PUT (TEXTFILE, NATURAL'IMAGE LONGS));

if LONGDIR = W then

PUT (TEXTFILE, " W");

else

PUT (TEXTFILE, " E");

end if;

end PRINTGLOBALPOSITION;

+++++++++++.+++++++.++++++++++PRINT OBSERVATIONTIME+.+++++++++++++++++

-- Prints time of TRACK observation as mm/dd/yy hh:mm:ss

121

procedure PRINTOBSERVATION TIME is

begin

Y YEAR (ABSTIME);

M MONTH (ABSTIME);

D DAY (ABSTIME);

S TIMEOFDAY (ABSTIME);

PUT TEXTFILE, NATURAL'IMAGE M));

PUT TEXTFILE, "/");

PUT TEXTFILE, NATURAL'IMAGE D));

PUT TEXTFILE, "/");

PUT TEXTFILE, NATURAL'IMAGE Y - 1900));

PUT TEXTFILE, ".);

PUT TEXTFILE, NATURAL'IMAGE (HOURS (TIMEOFDAY ABSTIME))

PUT TEXTFILE, ':');

PUT TEXTFILE, NATURAL'IMAGE (MINUTES (TIME OF DAY (ABSTIME

PUT (TEXTFILE, ':');

PUT (TEXTFILE, NATURAL'IMAGE NATURAL (SECONDS (TIMEOFDAY

(ABSTIME)))));

end PRINTOBSERVATIONTIME;

begin -- WRITETRACKARCHIVESTOTEXTFILE

-- Open DIRECTIO TRACK archive files

TRACKDATAOUT.OPEN (TRKFILE, INOUTFILE, "TRKFILE");

TRACKOBSOUT.OPEN (OBSFILE, INOUTFILE, "OBSFILE");

-- Create text file for TRACK history

TEXTIO.CREATE (TEXTFILE, NAME => "TRACKS.HIS");

while NOT TRACKDATAOUT.END OF FILE (TRKFILE) loop

-- Read in all unique TRACKDATA records one at a time

TRACKDATAOUT.READ (TRKFILE, TDATA);

TRKNUM := TDATA.TRACKID;-- Get TRACK number to identify its

122

-- observations in OBSFILE

-- Read in & write TRACKDATA info to text file

TCAT := TDATA.CATEGORY;

AMPINFO TDATA.AMPLINFO;

PUTLINE (TEXTFILE, DASHES);

PUT (TEXTFILE, "TRACK NUMBER :");

rUT (TEXT FILE, NATURAL'IMAGE (TRK NUM));

SETCOL (TEXTFILE, 40);

PUT (TEXTFILE, "CONTROL "

if TDATA.CONTROL = LINK then

PUT (TEXTFILE, "LINK");

else

PUT (TEXTFILE, "LOCAL");

end if;

TEXTIO.NEWLINE (TEXTFILE);

PUT (TEXTFILE, "AMPLIFYING INFO "

PUT (TEXTFILE, AMPSTR.STR (AMPINFO));

TEXTIO.NEWLINE (TEXT FILE);

PUT (TEXTFILE, "TRACK CATEGORY "

case TCAT is

when UNKNOWN =>

PUT (TEXTFILE, "UNKNOWN");

TEXT IO.NEWLINE (TEXTFILE);

PUTLINE (TEXTFILE, DASHES);

when SURFACEPLATFORM =>

CLASS T_DATA.SCLASS;

NAME TDATA.VNAME;

IDENT T_DATA.SID;

PUT (TEXTFILE, "SURFACEPLATFORM");

TEXTIO.NEWLINE (TEXTFILE);

PUT TEXT-FILE, "CLASS : "I

PUT (TEXTFILE, VANDCSTR.STR (CLASS));

TEXTIO.NEWLINE (TEXTFILE);

PU?" (TEXT FILE, "IDENTITY : "

123

case IDENT is

when UNKNOWN =>

PUT (TEXTFILE, "UNKNOWN");

when FRIENDLY =>

PUT (TEXTFILE, "FRIENDLY");

when HOSTILE =>

PUT (TEXTFILE, "HOSTILE");

when NEUTRAL =>

PUT (TEXTFILE, "NEUTRAL");

end case;

TEXTIO.NEWLINE (TEXTFILE);

PUT (TEXTFILE, "VESSEL NAME "

PUT (TEXT FILE, VAND C STR.STR (NAME));

TEXTIO.NEWLINE (TEXTFILE);

PUTLINE (TEXTFILE, DASHES);

when SUBSURFACEPLATFORM =>

PUT (TEXTFILE, "SUBSURFACEPLATFORM");

CLASS TDATA.SCLASS;

NAME TDATA.VNAME;

IDENT TDATA.SID;

TEXTIO.NEWLINE (TEXTFILE);

PUT (TEXTFILE, "CLASS : "

PUT (TEXTFILE, VANDCSTR.STR (CLASS));

TEXTIO.NEWLINE (TEXTFILE);

PUT (TEXT-FILE, "IDENTITY "

case IDENT is

when UNKNOWN =>

PUT (TEXTFILE, "UNKNOWN");

when FRIENDLY =>

PUT (TEXTFILE, "FRIENDLY");

when HOSTILE =>

PUT (TEXTFILE, "HOSTILE");

when NEUTRAL =>

PUT (TEXTFILE, "NEUTRAL");

end case;

TEXT IO.NEWLINE (TEXTFILE);

124

PUT (TEXTFILE, "VESSEL NAME : ");

PUT (TEXTFILE, VANDCSTR.STR (NAME));

TEXTIO.NEWLINE (TEXTFILE);

PUT-LINE (TEXTFILE, DASHES);

when AIRPLATFORM =>

PUT (TEXTFILE, "AIRPLATFORM");

CLASS T_DATA.ACLASS;

IDENT T DATA.AID;

TEXTIO.NEWLINE (TEXTFILE);

PUT (TEXTFILE, "CLASS : "

PUT (TEXTFILE, VANDCSTR.STR (CLASS));

TEXTIO.NEWLINE (TEXTFILE);

PUT (TEXTFILE, "IDENTITY "

case IDENT is

when UNKNOWN =>

PUT (TEXTFILE, "UNKNOWN" ;

when FRIENDLY =>

PUT (TEXTFILE, "FRIENDLY");

when HOSTILE =>

PUT (TEXTFILE, "HOSTILE" ;

when NEUTRAL =>

PUT (TEXTFILE, "NEUTRAL" ;

end case;

TEXTIO.NEW LINE (TEXTFILE);

PUTLINE (TEXTFILE, DASHES);

when REGION =>

REGCAT TDATA.RTYPE.REGCAT;

REGPL TDATA.RTYPE.REGPLACEMT;

PUT (TEXTFILE, "REGION" ;

SETCOL (TEXTFILE, 35);

case reg cat is

when CIRCLE =>

PUT (TEXTFILE, "CIRCLE"

SETCOL (TEXTFILE, 45);

125

case REGPL is

when ABSOLUTE =>

GLOPOS := TDATA.R_TYPE.ABSCENTER;

PUT (TEXTFILE, "ABSOLUTE");

TEX1_O.NE LINE (TEXTFILE);

PUT (TEXTFILE,"CIRCLE CENTER :");

PRINTGLOBALPOSITION;

when RELATIVETOTRACK =>

PUT (TEXTFILE, "RELATIVE TO TRACK");

NAT NUM := TDATA.RTYPE.REFERENCETRACK1;

PUT (TEXTFILE,NATURAL'IMAGE (NATNUM));

TEXTIO.NEW ,INE (TEXTFILE);

PUTLINE (TEXTFILE, "BRG / RG FROM");

PUT (TEXTFILE, "REFERENCE TRACK :");

NAT NUM = NATURAL (RADIANSTODEGREES (BEARINGTO

(TDATA.RTYPE.RELCENTER)));

PUT (TEXTFILE,NATURAL'IMAGE(NATNUM));

PUT (TEXTFILE, '/');

NAT NUM := NATURAL (RANGEOF (TDATA.RTYPE.RELCENTER));

PUT (TEXTFILE,NATURAL'IMAGE (NATNUM));

end case;

TEXTIO.NEWLINE (TEXT FILE);

PUT (TEXTFILE, "CIRCLE RADIUS :");

NATNUM := NATURAL (TDATA.RTYPE.RADIUS);

PUT (TEXTFILE, NATURAL'IMAGE (NATNUM));

TEXTIO.NEWLINE (TEXT FILE);

when POLYGON =>

PUT (TEXTFILE, "POLYGON");

SETCOL (TEXTFILE, 45);

case REGPL is

when ABSOLUTE =>

PUT (TEXTFILE, "ABSOLUTE");

TEXTIO.NEWLINE (TEXTFILE);

PUT (TEXTFILE, "POLYGON VERTICES :");

126

TEXTIO.NEWLINE (TEXTFILE);

NATNUM := NATURAL (TDATA.RTYPE.ABSVERTICES.PTS);

for I in 0 .. NAT NUM loop

GLOPOS := T DATA.R TYPE.ABSVERTICES.VERTICES (I);

PRINTGLOBALPOSITION;

TEXTIO.NEWLINE (TEXTFILE);

end loop;

when RELATIVE TO TRACK =>

PUT (TEXTFILE, "RELATIVE TO TRACK");

NATNUM := T_DATA.RTYPE.REFERENCETRACKI;

PUT (TEXTFILE,NATURAL'IMAGE (NATNUM));

TEXTIO.NEWLINE (TEXTFILE);

PUTLINE(TEXTFILE,"POLYGON VERTICES");

PUT (TEXTFILE, "(BRG/RG FM REF TRK) :");

TEXTIO.NEWLINE (TEXTFILE);

NATNUM := NATURAL (TDATA.RTYPE.RELVERTICES.PTS);

for I in 0 .. NATNUM loop

REL POS TDATA.RTYPE.RELVERTICES.VERTICES (I);

NATNUM NATURAL (RADIANSTODEGREES (BEARINGTO

(RELPOS)));

PUT (TEXTFILE, NATURAL'IMAGE (NATNUM));

PUT (TEXTFILE, '/');

NATNUM := NATURAL (RANGE OF (REL POS));

PUT (TEXTFILE, NATURAL'IMAGE (NATNUM));

TEXTIO.NEWLINE (TEXTFILE);

end loop;

end case;

end case;

PUTLINE (TEXTFILE, DASHES);

when PATH =>

PUT (TEXTFILE, "PATH");

TEXTIO.NEWLINE (TEXTFILE);

NATNUM := T DATA.PTYPE.PTS;

127

for I in 0 .. NAT_NUM loop

GLOPOS T DATA.PTYPE.WAYPTS (I).POSITION;

ABSTIME T_DATA.PTYPE.WAYPTS (I).TIMETO;

PUT (TEXTFILE, "PATH POINT POSITION :");

PRINTGLOBALPOSITION;

TEXTIO.NEWLINE (TEXTFILE);

PUT (TEXTFILE, "TIME TO PATH POINT :");

PRINTOBSERVATIONTIME;

TEXTIO.NEWLINE (TEXTFILE);

end loop;

PUTLINE (TEXTFILE, DASHES);

when SPECIALPOINT =>

SPECPT := T DATA.SPTYPE.SPCAT;

PUT (TEXTFILE, "SPECIAL POINT");

SETCOL (TEXTFILE, 40);

case SPECPT is

when GENERAL =>

PUT (TEXTFILE, "GENERAL");

when WAYPOINT =>

GLOPOS TDATA.SPTYPE.WAYPT.POSITION;

ABSTIME T DATA.SPTYPE.WAYPT.TIMETO;

PUT (TEXTFILE, "WAYPOINT");

TEXTIO.NEWLINE (TEXTFILE);

PUT (TEXTFILE, "WAYPOINT POSITION :");

PRINTGLOBALPOSITION;

TEXTIO.NEWLINE (TEXTFILE);

PUT (TEXTFILE, "TIME TO WAYPOINT :");

PRINTOBSERVATIONTIME;

when NAV HAZARD =>

PUT (TEXTFILE, "NAV HAZARD");

end case;

TEXTIO.NEWLINE (TEXT FILE);

PUTLINE (TEXT FILE, DASHES);

128

when MAN IN WATER =>

PUT (TEXTFILE, "MANINWATER");

TEXTIO.NEWLINE (TEXTFILE);

PUTLINE (TEXTFILE, DASHES);

when NONDISPLAYABLE =>

PUT (TEXTFILE, "NONDISPLAYABLE");

TEXTIO.NEWLINE (TEXTFILE);

PUTLINE (TEXTFILE, DASHES);

end case;

-- Since we know the TRACK number of the current TRACK being read/
written,

-- we can now identify its observations in OBSFILE by searching on its

-- TRACK number. Also, since a TRACK and its observations are dropped

-- at the same time, the observations for any particular TRACK will be

contiguous in the file.

while NOT TRACKOBSOUT.ENDOFFILE (OBSFILE) loop

exit when FINISHED;

TRACKOBSOUT.READ (OBSFILE, T_0);

if TRK NUM = T O.T NUM then

-- A match on TRACK number is found in the OBSFILE,

-- All observations will be together, so keep reading until a

mismatch

-- is found

while NOT FINISHED loop

-- Read in & write all TRACK's observations

GLOPOS T O.GO.POSITION;

ABSTIME T_O.GO.OBSERVATIONTIME;

PUT (TEXTFILE, "OBSERVATION POSITION :");

PRINT GLOBALPOSITION;

TEXT IO.NEW LINE (TEXTFILE);

PUT (TEXTFILE, "TIME OF OBSERVATION :");

129

PRINTOBSERVATIONTIME;

TEXTIO.NEWLINE (TEXTFILE);

PUT (TEXTFILE, "OBSERVED COURSE :");

NATNUM := NATURAL (RADIANSTODEGREES (COURSE

TO.GO.COURSEAND SPEED)));

PUT (TEXTFILE, NATURAL'IMAGE (NATNUM));

TEXTIO.NEWLINE (TEXTFILE);

PUT (TEXTFILE, "OBSERVED SPEED :");

NATNUM := NATURAL (SPEEDINKNOTS (SPD

TO.GO.COURSEANDSPEED)));

PUT (TEXT FILE, NATURAL'IMAGE (NATNUM));

TEXTIO.NEWLINE (TEXTFILE);

PUTLINE (TEXTFILE, DOTS);

if NOT TRACKOBSOUT.ENDOFFILE (OBSFILE) then

-- Get next TRACK observation

TRACKOBSOUT.READ (OBSFILE, T_0);

if TRKNUM /= TO.TNUM then

-- Mismatch on TRACK number

FINISHED := TRUE;

-- Write next TRACK info on new page

TEXTIO.NEWPAGE (TEXTFILE);

end if;

else -- No more TRACK observations

FINISHED := TRUE;

TEXTIO.NEWPAGE (TEXTFILE);

end if;

end loop;

end if;

end loop;

130

-- Go back to the start of OBSFILE to start reading observations for

-- the next TRACK

TRACKOBSOUT.RESET (OBSFILE);

-- Reset flag

FINISHED := FALSE;

end loop;

TRACKDATAOUT.CLOSE (TRKFILE);

TRACKOBSOUT.CLOSE (OBSFILE);

TEXTIO.CLOSE (TEXTFILE);

end WRITETRACKARCHIVESTOTEXTFILE;

........... ADD TRACKOBSERVATION

procedure ADDTRACKOBSERVATION

(TRK : in out TRACK;

GO : in GLOBALOBSERVATION) is

T_0 : TRACKOBSPTR;

begin

-- Add observation to head of list

TO := new TRACKOBS;

TO.GLOOBS GO;

T_O.NEXTOBS TRK.TRKOBS;

TRK.TRKOBS T_0;

end ADDTRACKOBSERVATION;

-- 4

.............................. SETTRACKIDENTITY

procedure SET TRACK IDENTITY

(TRK : in out TRACK;

TID : in IDENTITYTYPE) is

begin

131

case TRK.TRACKDATA.CATEGORY is

when SURFACE PLATFORM I SUBSURFACEPLATFORM =>

TRK.TRACKDATA.S ID TID;

when AIR PLATFORM =>

TRK.TRACKDATA.A ID TID;

when others =>

null;

end case;

end SETTRACKIDENTITY;

................................. SETAMPL_ INFO

procedure SETAMPLINFO

(TRK : out TRACK;

AMP : in AMPSTR.VSTRING) is

begin

TRK.TRACKDATA.AMPLINFO AMP;

end SETAMPLINFO;

.............................. SET PLATFORM CLASS

procedure SET PLATFORM CLASS

(TRK : in out TRACK;

PC : in VANDCSTR.VSTRING) is

begin

case TRK.TRACK DATA.CATEGORY is

when SURFACEPLATFORM I SUBSURFACEPLATFORM =>

TRK.TRACKDATA.SCLASS PC;

when AIRPLATFORM =>

TRK.TRACKDATA.ACLASS PC;

when others =>

null;

end case;

end SETPLATFORMCLASS;

............................... SET_ VESSELNAME

132

procedure SETVESSEL NAME

(TRK : in out TRACK;

VES : in V ANDCSTR.VSTRING) is

begin

if (TRK.TRACKDATA.CATEGORY = SURFACE PLATFORM) or

(TRK.TRACKDATA.CATEGORY = SUBSURFACEPLATFORM) then

TRK.TRACKDATA.VNAME := VES;

end if;

end SETVESSELNAME;

................................. SET ALTITUDE

procedure SETALTITUDE

(TRK : in out TRACK;

ALT : in DISTANCE) is

begin

if TRK.TRACK DATA.CATEGORY = AIR PT.TFORM then

TRK.TRACKDATA.ALTITUDE := ALT;

end if;

end SETALTITUDE;

................................. SET_ CONTROL

procedure SETCONTROL

(TRK : out TRACK;

CON : in CONTROLTYPE) is

begin

TRK.TRACKDATA.CONTROL := CON;

end SETCONTROL;

.............................. CHANGE TRACKCATEGORY

procedure CHANGE TRACKCATEGORY

(TRKI : in out TRACK;

CAT : in TRACK CATEGORY) is

133

TRK2 TRACK;

SFC SURFACETRACKTYPE;

SUB SUBSURFACETRACKTYPE;

AIR AIRTRACKTYPE;

REG REGIONTRACKTYPE;

SPP SPECIALPOINTTRACKTYPE;

PTH PATHTRACKTYPE;

MIW MANINWATERTRACKTYPE;

NON NONDISPLAYABLETRACKTYPE;

begin

case CAT is

when SURFACEPLATFORM =>

TRK2.TRACKDATA := SFC;

when SUBSURFACE PLATFORM =>

TRK2.TRACKDATA := SUB;

when AIRPLATFORM =>

TRK2.TRACKDATA AIR;

when REGION =>

TRK2.TRACKDATA REG;

when SPECIALPOINT =>

TRK2.TRACKDATA SPP;

when PATH =>

TRK2.TRACKDATA PTH;

when MANINWATER =>

TRK2.TRACKDATA := MIW;

when NONDISPLAYABLE =>

TRK2.TRACKDATA := NON;

when others =>

null;

end case;

TRK2.TRACKDATA.TRACKID TRK1.TRACKDATA.TRACKID;

TRK2.TRACKDATA.AMPLINFO TRK1.TRACKDATA.AMPLINFO;

TRK2.TRACKDATA.CONTROL := TRK1.TRACKDATA.CONTROL;

TRK2.TRKOBS := TRK1.TRKOBS;

TRKI := TRK2;

end CHANGETRACKCATEGORY;

134

........................... BUILDWAYPOINTSPECIALPOINT

procedure BUILDWAYPOINTSPECIALPOINT

(TRK : in out TRACK;

POS : in GLOBALPOSITION;

TYME : in ABSOLUTETIME) is

WP : SPECIAL POINT TYPE (WAYPOINT);

begin

CHANGE TRACK CATEGORY (TRK, SPECIAL POINT);

WP.WAYPT.POSITION POS;

WP.WAYPT.TIMETO TYME;

TRK.TRACK DATA.S P TYPE := WP;

end BUILDWAYPOINTSPECIALPOINT;

............................ BUILDNAVHAZARD SPECIAL POINT

procedure BUILDNAVHAZARDSPECIALPOINT

(TRK : in out TRACK) is

NH : SPECIAL POINTTYPE (NAV HAZARD);

begin

CHANGE TRACKCATEGORY (TRK, SPECIALPOINT);

TRK.TRACKDATA.SP TYPE := NH;

end BUILDNAVHAZARDSPECIALPOINT;

........................... BUILDGENERALSPECIALPOINT

procedure BUILDGENERALSPECIALPOINT

(TRK : in out TRACK) is

GEN : SPECIAL POINTTYPE;

begin

135

CHANGETRACKCATEGORY (TRK, SPECIALPOINT);

TRK.TRACKDATA.SP TYPE := GEN;

end BUILDGENERALSPECIALPOINT;

................................... BUILDPATH

procedure BUILDPATH

(TRK : in out TRACK;

PTS : in WAYPOINTARRAY) is

N : NUMPATHPTS := PTS'LAST;

PTH : PATHTYPE (N);

begin

CHANGETRACKCATEGORY (TRK, PATH);

PTH.WAYPTS : PTS;

TRK.TRACKDATA.PTYPE PTH;

end BUILDPATH;

.......................... BUILDABSOLUTECIRCLE REGION

procedure BUILDABSOLUTECIRCLEREGION

(TRK : in out TRACK;

RAD in DISTANCE;

CTR in GLOBALPOSITION) is

ABSCIRCLE : REGION-TYPE;

begin

CHANGETRACKCATEGORY (TRK, REGION);

ABSCIRCLE.RADIUS := RAD;

ABSCIRCLE.ABSCENTER CTR;

TRK.TRACKDATA.RTYPE ABSCIRCLE;

end BUILDABSOLUTECIRCLEREGION;

136

.......................... BUILDRELATIVECIRCLEREGION

procedure BUILDRELATIVECIRCLE REGION

(TRK : in out TRACK;

RAD in DISTANCE;

CTR in RELATIVE FOSITION;

REF in NATURAL) is

RELCIRCLE : REGIONTYPE (CIRCLE, RELATIVE TO TRACK);

begin

CHANGETRACKCATEGORY (TRK, REGION);

RELCIRCLE.RADIUS := RAD;

RELCIRCLE.RELCENTER := CTR;

RELCIRCLE.REFERENCE TRACK1 := REF;

TRK.TRACKDATA.RTYPE := RELCIRCLE;

end BUILDRELATIVECIRCLEREGION;

.......... BUILDABSOLUTE POLYGONREGION

procedure BUILDABSOLUTEPOLYGONREGION

(TRK : in out TRACK;

AVA : in ABSOLUTEVERTEXARRAY) is

N : NUMVERTICES := AVA'LAST;

AV-TYPE ABSVERTEXTYPE (N);

ABSPOLY REGIONTYPE (POLYGON, ABSOLUTE);

begin

CHANGETRACKCATEGORY (TRK, REGION);

AVTYPE.VERTICES := AVA;

ABSPOLY.ABSVERTICES AVTYPE;

TRK.TRACKDATA.RTYPE ABSPOLY;

end BUILDABSOLUTEPOLYGONREGION;

......................... BUILD RELATIVE POLYGONREGION

procedure BUILD RELATIVE POLYGONREGION

137

TRK : in out TRACK;

RVA in RELATIVEVERTEX-ARRAY;

REF in NATURAL) is

N : NUMVERTICES RVA'LAST;

RVTYPE RELVERTEXTYPE (N);

RELPOLY REGIONTYPE (POLYGON, RELATIVETOTRACK);

begin

CHANGETRACKCATEGORY (TRK, REGION);

RVTYPE.VERTICES := RVA;

RELPOLY.RELVERTICES := RVTYPE;

RELPOLY.REFERENCETRACK2 := REF;

TRK.TRACKDATA.RTYPE := RELPOLY;

end BUILDRELATIVEPOLYGONREGION;

............................... TRACK_ HISTORY

procedure TRACKHISTORY

(TRK : in TRACK;

HISTORYPTSARRAY : in out GLOBOBSARRAY) is

-- Points to first TRACK observation

NEXTOBSERVATIONPTR : TRACKOBSPTR := TRK.TRKOBS;

begin

-- Read in as many observations as the user requested (as indicated by

-- the size of the array

for I in HISTORYPTSARRAY'RANGE loop

-- If there are less TRACK observations than the user requested

if NEXTOBSERVATIONPTR = null then

return;

end if;

-- Fill array element with current observation

HISTORY PTS ARRAY (I) NEXTOBSERVATIONPTR.GLOOBS;

138

-- Point to next observation

NEXTOBSERVATIONPTR := NEXTOBSERVATIONPTR.NEXTOBS;

end loop;

end TRACKHISTORY;

................................ CHANGE COURSE

procedure CHANGECOURSE

(TRK : in out TRACK;

CRS : in ANGLE) is

-- TRACK's current speed

TRUESPD : SPEED := TRUE SPEED (TRK);

-- TRACK's current position

TRKPOS GLOBALPOSITION := CURRENTPOSITION (TRK);

NEWOBS GLOBALOBSERVATION;

NEWCRSSPD VELOCITY;

begin

NEWCRSSPD MAKEVELOCITY (TRUESPD, CRS);

NEWOBS.OBSERVATIONTIME := NOW;

NEWOBS.POSITION := TRK POS;

NEWOBS.COURSEANDSPEED := NEWCRSSPD;

-- Since we're changing TRACK's course, need to add a new observation

ADDTRACKOBSERVATION (TRK, NEWOBS);

end CHANGECOURSE;

.................................. CHANGE SPEED

procedure CHANGE SPEED

(TRK : in out TRACK;

SPD in SPEED) is

139

-- TRACK's current course

TRUECRS : ANGLE := TRUECOURSE (TRK);

-- TRACK's current position

TRKPOS GLOBALPOSITION := CURRENTPOSITION (TRK);

NEWOBS GLOBALOBSERVATION;

NEWCRSSPD VELOCITY;

begin

NEWCRSSPD MAKEVELOCITY (SPD, TRUECRS);

NEWOBS.OBSERVATIONTIME := NOW;

NEWOBS.POSITION := TRKPOS;

NEWOBS.COURSEANDSPEED := NEWCRSSPD;

-- Since we're changing TRACK's speed, need to add a new observation

ADDTRACKOBSERVATION (TRK, NEWOBS);

end CHANGESPEED;

............................. CHANGEGLOBALPOSITION

procedure CHANGEGLOBALPOSITION

(TRK : in out TRACK;

GP : in GLOBALPOSITION) is

-- TRACK's current course and speed

TRUEVEL VELOCITY := TRUEVELOCITY (TRK);

NEWOBS GLOBALOBSERVATION;

begin

NEWOBS.OBSERVATIONTIME NOW;

NEWOBS.COURSEANDSPEED TRUEVEL;

NEWOBS.POSITION := GP;

-- Since we're changing TRACK's course and speed, need to add a new

-- observation

140

ADD TRACKOBSERVATION (TRK, NEWOBS);

end CHANGEGLOBALPOSITION;

............................... TRACK_ IDNUMBER

function TRACKIDNUMBER

TRK : TRACK) return NATURAL is

begin

return TRK.TRACKDATA.TRACKID;

end TRACKIDNUMBER;

................................ TRACK IDENTITY

function TRACKIDENTITY

(TRK : TRACK) return IDENTITYTYPE is

begin

case TRK.TRACKDATA.CATEGORY is

when SURFACEPLATFORM I SUBSURFACE PLATFORM =>

return TRK.TRACKDATA.SID;

when AIRPLATFORM =>

return TRK.TRACKDATA.AID;

when others =>

null;

end case;

end TRACKIDENTITY;

.................................. AMPL_ INFO

function AMPL INFO

TRK : TRACK) return AMP STR.VSTRING is

begin

return TRK.TRACKDATA.AMPLINFO;

end AMPLINFO;

141

................................. PLATFORMCLASS

function PLATFORMCLASS

(TRK : TRACK) return VANDCSTR.VSTRING is

begin

case TRK.TRACK DATA.CATEGORY is

when SURFACEPLATFORM I SUBSURFACEPLATFORM =>

return TRK.TRACKDATA.SCLASS;

when AIRPLATFORM =>

return TRK.TRACKDATA.ACLASS;

when others =>

null;

end case;

end PLATFORMCLASS;

................................. VESSEL_ NAME

function VESSEL NAME

(TRK : TRACK) return VANDCSTR.VSTRING is

begin

if (TRK.TRACKDATA.CATEGORY = SURFACE PLATFORM) or

(TRK.TRACK DATA.CATEGORY = SUBSURFACEPLATFORM) then

return TRK.TRACK DATA.VNAME;

end if;

end VESSELNAME;

................................ TRK CATEGORY

function TRKCATEGORY

(TRK : TRACK) return TRACKCATEGORY is

begin

return TRK.TRACKDATA.CATEGORY;

end TRKCATEGORY;

142

................................. CONTROL

function CONTROL

(TRK : TRACK) return CONTROLTYPE is

begin

return TRK.TRACKDATA.CONTROL;

end CONTROL;

............................... TRUE_ COURSE

function TRUE COURSE

(TRK : TRACK) return ANGLE is

begin

return COURSE (MOSTRECENTOBSERVATION (TRK).COURSEANDSPEED);

end TRUECOURSE;

................................ TRUE_ SPEED

function TRUESPEED

(TRK : TRACK) return SPEED is

begin

return SPD (MOSTRECENTOBSERVATION (TRK).COURSEANDSPEED);

end TRUESPEED;

.............................. TRUEVELOCITY

function TRUEVELOCITY

TRK : TRACK) return VELOCITY is

begin

return MOSTRECENTOBSERVATION (TRK).COURSEANDSPEED;

end TRUEVELOCITY;

............................ TARGET RELATIVEVELOCITY

function TARGET RELATIVE VELOCITY

(REFERENCETRACK,

TARGET TRACK : TRACK) return VELOCITY is

143

REFTRUEVELOCITY,

TGTTRUEVELOCITY : VELOCITY;

begin

-- Get target & reference TRACK's true velocity

REFTRUEVELOCITY TRUEVELOCITY (REFERENCETRACK);

TGTTRUEVELOCITY TRUEVELOCITY (TARGETTRACK);

-- The difference in the 2 true velocity vectors gives relative velocity

return VECTOR_2_PKG.'"-.. (TGTTRUEVELOCITY, REFTRUEVELOCITY);

end TARGETRELATIVEVELOCITY;

................................ RELATIVE COURSE

function RELATIVECOURSE

(REFERENCETRACK,

TARGETTRACK : TRACK) return ANGLE is

begin

return COURSE (TARGETRELATIVEVELOCITY

(REFERENCETRACK, TARGETTRACK));

end RELATIVECOURSE;

................................ RELATIVE_ SPEED

function RELATIVESPEED

(REFERENCETRACK,

TARGETTRACK : TRACK) return SPEED is

begin

return SPD (TARGETRELATIVEVELOCITY (REFERENCETRACK, TARGETTRACK

end RELATIVESPEED;

.................................. ALT ITUDE

function ALTITUDE

(TRK : TRACK) return DISTANCE is

begin

144

if TRK.TRACKDATA.CATEGORY = AIR PLATFORM then

return TRK.TRACKDATA.ALTITUDE;

end if;

end ALTITUDE;

............................... CURRENT_ POSITION

function CURRENT POSITION

(TRK : TRACK) return GLOBALPOSITION is

TIMEDIFF7RENCE : RELATIVETIME;

TRACKSPEED SPEED TRUESPEED (TRK);

TRACKCOURSE ANGLE TRUECOURSE (TRK);

DEADRECKONINGDISTANCE DISTANCE;

DEADRECKONINGPOSITION RELATIVEPOSITION;

LAST GLOBALPOSITION : GLOBAL-POSITION;

begin

-- Get time difference between last TRACK observation and now in order
to

-- compute distance traveled

TIME DIFFERENCE := NOW - MOSTRECENTOBSERVATION (TRK
).OBSERVATIONTIME;

-- Compute distance traveled based on last known speed and time
difference

DEADRECKONINGDISTANCE TRACKSPEED * TIMEDIFFERENCE;

-- Make a RELATPr 12C1±LZN vect-r

DEAD RECKONINGPOSITION RELATIVEPOSITION (MAKEPOLARVECTOR 2
FLOAT

DEADRECKONINGDISTANCE), TRACKCOURSE));

-- Get TRACK's last known GLOBAL POSITION

LASTGLOBALPOSITION := MOSTRECENTOBSERVATION (TRK).POSITION;

-- We can now find the TRACK's current position based on last

-- GLOBALPOSITION and the relative position from that point

return FIND GLOBALPOSITION (DEADRECKONINGPOSITION,

145

LASTGLOBALPOSITION);

end CURRENTPOSITION;

............................... RELATIVE BEARING

function RELATIVE BEARING

(REFERENCETRACK,

TARGETTRACK : TRACK) return ANGLE is

REFERENCETRUECOURSE ANGLE := TRUECOURSE (REFERENCETRACK);

REFERENCEPOSITION GLOBALPOSITION := CURRENTPOSITION

(REFERENCETRACK);

TARGETPOSITION GLOBALPOSITION := CURRENTPOSITION

(TARGETTRACK);

BEARINGTOTARGET : ANGLE;

RELBEARING : ANGLE;

begin

-- Relative bearing to a target means we assume reference TRACK's

-- heading to be 000.0 (no matter what course it is actually on

-- The target TRACK's relative bearing from the reference TRACK is a

-- function of the target TRACK's true bearing from the reference TRACK

-- and the reference TRACK's true course.

-- Get true bearing to the target

BEARINGTOTARGET := BEARING TO (FIND RELATIVE POSITION

(TARGETPOSITION, REFERENCEPOSITION));

-- Compute relative bearing

REL BEARING := MATH.PI * 2.0 - REFERENCETRUE COURSE +
BEARINGTOTARGET;

-- Correct for angle > 360.0

if RELBEARING >= MATH.PI * 2.0 then

RELBEARING := RELBEARING - MATH.PI * 2.0;

end if;

return RELBEARING;

146

end RELATIVEBEARING;

................................ TRUEBEARING

function TRUEBEARING

(REFERENCETRACK,

TARGETTRACK : TRACK) return ANGLE is

REFERENCEPOSITION GLOBALPOSITION := CURRENTPOSITION

(REFERENCETRACK);

TARGETPOSITION GLOBALPOSITION := CURRENTPOSITION

(TARGETTRACK);

begin

return BEARINGTO (FINDRELATIVE POSITION

(TARGETPOSITION, REFERENCEPOSITION));

end TRUEBEARING;

........................... MOSTRECENT OBSERVATION

function MOSTRECENTOBSERVATION

(TRK : TRACK) return GLOBALOBSERVATION is

begin

return TRK.TRKOBS.GLOOBS;

end MOSTRECENTOBSERVATION;

.............................. SPEC POINT_ CATEGORY

function SPECPOINTCATEGORY

(TRK : TRACK) return SPECIALPOINTCATEGORY is

begin

return TRK.TRACKDATA.SPTYPE.SPCAT;

end SPECPOINTCATEGORY;

............................. MAKE GLOBALOBSERVATION

function MAKEGLOBALOBSERVATION

OWNSHIP TRACK : TRACK;

147

TARGETTRACK : TRACK;

TGTRELPOS : RELATIVEPOSITION) return GLOBALOBSERVATION is

GO GLOBALOBSERVATION;

OP GLOBALPOSITION := CURRENTPOSITION (OWNSHIPTRACK);

GP_1,

GP_2 : GLOBALPOSITION;

TP : TRACKOBSPTR := TARGETTRACK.TRKOBS;

CRS1: ANGLE;

SPD_1 SPEED;

RP_1 RELATIVEPOSITION;

RT : RELATIVETIME;

begin

-- Get target TRACK's position based on reference TRACK's position

-- and the target's relative position from the reference

GP_1 := FINDGLOBALPOSITION (TGTRELPOS, OP),

GO.POSITION := GPI;

GO.OBSERVATIONTIME := NOW;

-- In order to compute course and speed, we need at least 1 previous

-- observation with which to compare against its new observation

if TP = null then -- No previous observations

GO.COURSEANDSPEED := MAKEVELOCITY (0.0, 0.0

else

GP 2 := TP.GLOOBS.POSITION;

-- Compute time difference between last observation and new one

RT := GO.OBSERVATIONTIME - TP.GLOOBS.OBSERVATIONTIME;

-- Find the position difference between the 2 observations

RP_1 := FINDRELATIVEPOSITION (GPI, GP_2);

-- Get the new course and speed

CRS 1 BEARINGTO (RP_1);

SPD 1 := RANGEOF (RP_1) / RT;

GO.COURSEANDSPEED := MAKE VELOCITY (SPD_1, CRS_1);

148

end if;

return GO;

end MAKEGLOBALOBSERVATION;

.................................. REGION_ CATEG

function REGIONCATEG

(TRK : TRACK) return REGIONCATEGORY is

begin

if TRKCATEGORY (TRK) = REGION then

return TRK.TRACKDATA.R_TYPE.REGCAT;

end if;

end REGIONCATEG;

................................. REGION_ PLCMT

function REGION PLCMT

(TRK : TRACK) return REGIONPLACEMENT is

begin

if TRKCATEGORY (TRK) = REGION then

return TRK.TRACKDATA.RTYPE.REGPLACEMT;

end if;

end REGIONPLCMT;

................................. CIRCLE_ RADIUS

function CIRCLE RADIUS

(TRK : TRACK) return DISTANCE is

begin

if (TRKCATEGORY (TRK) = REGION) and then

TRK.TRACKDATA.RTYPE.REG CAT = CIRCLE) then

149

return TRK.TRACKDATA.RTYPE.RADIUS;

end if;

end CIRCLERADIUS;

.............................. ABSCIRCLECENTER

function ABSCIRCLECENTER

(TRK : TRACK) return GLOBALPOSITION is

begin

if (TRK CATEGORY (TRK) = REGION) and then

REGION CATEG (TRK) = CIRCLE) and then

REGIONPLCMT (TRK) = ABSOLUTE) then

return TRK.TRACKDATA.RTYPE.ABSCENTER;

end if;

end ABSCIRCLECENTER;

.............................. REL_ CIRCLECENTER

function RELCIRCLECENTER

(TRK : TRACK) return RELATIVEPOSITION is

begin

if (TRKCATEGORY (TRK) = REGION) and then

(REGIONCATEG (TRK) = CIRCLE) and then

(REGIONPLCMT (TRK) = RELATIVETOTRACK) then

return TRK.TRACKDATA.RTYPE.RELCENTER;

end if;

end RELCIRCLECENTER;

................................. PATHPOINTS
function PATH POINTS

(TRK : TRACK) return WAYPOINTARRAY is

begin

150

if TRKCATEGORY (TRK) = PATH then

return TRK.TRACKDATA.PTYPE.WAYPTS;

end if;

end PATHPOINTS;

.................................... WAYPNT

function WAYPNT

(TRK : TRACK) return WAYPOINTTYPE is

begin

if (TRK CATEGORY (TRK) = SPECIAL POINT) and then

(SPEC POINT CATEGORY (TRK) = WAYPOINT) then

return TRK.TRACKDATA.SPTYPE.WAYPT;

end if;

end WAYPNT;

.............................. REL REGION VERTICES
function RELREGIONVERTICES

(TRK : TRACK) return RELATIVE VERTEXARRAY is

begin

if (TRKCATEGORY (TRK) = REGION) and then

(REGIONCATEG (TRK) = POLYGON) and then

(REGIONPLCMT (TRK) = RELATIVETOTRACK) then

return TRK.TRACKDATA.RTYPE.RELVERTICES.VERTICES;

end if;

end RELREGIONVERTICES;

.............................. ABS REGIONVERTICES
function ABSREGIONVERTICES

(TRK : TRACK) return ABSOLUTEVERTEXARRAY is

begin

if (TRKCATEGORY (TRK) = REGION) and then

151

(REGIONCATEG (TRK) = POLYGON) and then

(REGIONPLCMT (TRK) = ABSOLUTE) then

return TRK.TRACKDATA.RTYPE.ABSVERTICES.VERTICES;

end if;

end ABSREGIONVERTICES;

........................ RELATIVE CIRCLE REFERENCETRKNUM
function RELATIVE CIRCLE REFERENCE TRK-NUM

TRK : TRACK) return NATURAL is

begin

if (TRKCATEGORY (TRK) = REGION) and then

(REGIONCATEG (TRK) = CIRCLE) and then

(REGIONPLCMT (TRK) = RELATIVETOTRACK) then

return TRK.TRACKDATA.RTYPE.REFERENCE TRACKI;

end if;

end RELATIVECIRCLEREFERENCETRKNUM;

....................... RELATIVE CIRCLE REFERENCETRKPOS
function RELATIVE CIRCLEREFERENCETRKPOS

(TRK : TRACK) return GLOBALPOSITION is

begin

if (TRKCATEGORY (TRK) = REGION) and then

(REGIONCATEG (TRK) = CIRCLE) and then

(REGIONPLCMT (TRK) = RELATIVE TO TRACK) then

return TRK.TRACKDATA.RTYPE.REFTRKPOSITIONI;

end if;

end RELATIVECIRCLEREFERENCETRKPOS;

........................ RELATIVE REGION REFERENCE TRK NUM
function RELATIVE REGION REFERENCE TRK-NUM - -

TRK : TRACK) return NATURAL is

begin

152

if (TRKCATEGORY (TRK) REGION) and then

REGIONCATEG (TRK) POLYGON) anci then

REGIONPLCM~T (TRK) RELATIVETOTRACK) then

return TRK.TRACKDATA.RTYPE.REFERENCETRACK2n;

end if;

end RELATIVEREGIONREFERENCETRKNUM;

...............RELATIVE REGION REFERENCETRKPOS.........
function RELATIVEREGIONREFERENCETRKP05

TRK :TRACK) return GLOBALPOSITION is

begin

if (TRKCATEGORY (TRK)=REGION) and then

REGIONCATEG (TRK) POLYGON) and then

REGIONPLCMT (TRK) RELATIVETOTRACK) then

return TRK.TRACKDATA.RTYPE.REFTRKPOSITION2-;

end if;

end RELATIVEREGIONREFERENCETRK_205;

...... UPDATERELATIVECIRCLEREFERENCETRKPOS.......
procedure UPDATERELATIVECIRCLEREFERENCETRKP05

(TRK :in out TRACK;

GP :in GLOBALPOSITION) is

begin

TRK.TRACKDATA.RTYPE.REFTRKPOSITIONi : GP;

end UPDATERELATIVECIRCLEREFERENCETRKPOS;

...... UPDATE RELATIVE REGION REFERENCETRKPOS.......

procedure UPDATE_RELATIVEREGION REFERENC ETRKPOS-

(TRK :in out TRACK;

GP :in GLOBALPOSITION) is

begin

TRK.TRACKDATA.RTYPE.REFTRKPOSITION2 :=GP;

end UPDATERELATIVEREGIONREFERENC-ETRKPOS;

end TRACKPKG;

153

APPENDIX D

FILTER PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

. ° o. .. o °. ..

-- Description : Defines abstract data type FILTER and associated

-- functions & procedures

with TRACKPKG, DISTANCEPKG, ABSOLUTETIMEPKG, DIRECTIO;

use TRACKPKG, DISTANCEPKG, ABSOLUTETIMEPKG;

package FILTERPKG is

-- An ATOMICFILTER is based on 1 of the 3 below attributes

type FILTERCATEGORY is

(DISTANCEFILTER,

TRACKCATEGORYFILTER,

PLATFORMIDENTITYFILTER);

-- An ATOMICFILTER based on DISTANCEFILTER is further based on the

-- attributes below

type DISTANCEATTRIBUTEID is

(RANGEFROMREFERENCETRACK,

ALTITUDE); -- from ownship

type RELATIONID is

154

EQUAL, NOTEQUAL, LESS, LESSOREQUAL, GREATER, GREATER OREQUAL);

subtype EQUALITYRELATIONID is

RELATIONID range EQUAL .. NOTEQUAL;

-- Each ANDFILTER is a set of ATOMICFILTERs

type ATOMICFILTER

FILTERTYPE : FILTERCATEGORY := DISTANCEFILTER) is private;

-- a track passes an ANDFILTER iff it passes every ATOMICFILTER in

-- the list.

type AND-FILTER is private;

-- a track passes a FILTER iff it passes at least one AND FILTER in

-- the list.

type FILTER is private;

-- Makes an ATOMIC FILTER based on DISTANCE attributes

procedure MAKE DISTANCE ATOMICFILTER

(DAFATTRIBID : in DISTANCEATTRIBUTEID;

DAFLIMIT : in DISTANCE;

DAFREFTRACK in TRACK;

DAFRELATION in RELATIONID;

ATOMICFILTUR out ATOMIC FILTER);

-- Makes an ATOMIC FILTER based on TRACK CATEGORY attributes

procedure MAKE TRACK CATEGORY ATOMIC FILTER

(TCAFDESIREDTRKCAT : in TRACKCATEGORY;

TCAFEQRELID in EQUALITYRELATION ID;

ATOMICFILTUR out ATOMICFILTER);

-- Makes an ATOMIC FILTER based on IDENTITY TYPE attributes

procedure MA(EPLATFORMIDENTITYATOMICFILTER

PIAFDESIREDPLATID : in IDENTITY-TYPE;

PIAFEQRELID in EQUALITYRELATIONID;

ATOMICFILTUR out ATOMICFILTER);

-- Once the ATOMICFILTER is built, it is added to the current
ANDFILTER

procedure ADD ATOMIC FILTER TO AND FILTER

ATOMICFILTUR : in ATOMIC FILTER;

155

AND FILTUR : in out ANDFILTER);

-- Once the ANDFILTER is filled with desired ATOMICFILTERs, it is
added to

-- the FILTER

procedure ADD AND FILTERTO FILTER

(ANDFILTUR in out ANDFILTER;

FILTUR : in out FILTER);

-- Clears the old FILTER to make way for a new one

procedure CLEARFILTER

F : in out FILTER);

-- Creates a DIRECTIO file that stores all FILTERs used during the
session

procedure CREATEFILTERFILE;

-- Once a new FILTER is created, it is written to the file created in

the

-- above procedure

procedure WRITE FILTER

F : in FILTER);

-- Compares a TRACK to the current FILTER to determine whether or not to

-- pass it to the TACPLOT (user display

function TEST FILTER

(F : FILTER;

T : TRACK) return BOOLEAN;

-- Everything in the active database is passed to TACPLOT

function EVERYTHING return FILTER;

-- Retrieves all FILTERs written to DIRECT 10 file and writes them to a

-- human readable text file for historical purposes

procedure WRITEFILTERARCHIVES TO TEXTFILE;

pragma INLINE (MAKE DISTANCE ATOMIC FILTER,

MAKETRACKCATEGORYATOMICFILTER,

MAKEPLATFORMIDENTITYATOMICFILTER,

ADDATOMICFILTERTOANDFILTER, ADDANDFILTERTOFILTER,

CLEARFILTER, WRITE-FILTER, TESTFILTER, EVERYTHING);

156

private

type ATOMICFILTER

(FILTER TYPE : FILTERCATEGORY := DISTANCE FILTER) is

record

case FILTER TYPE is

when DISTANCEFILTER =>

D_ATTRIBID : DISTANCEATTRIBUTEID;

DLIMIT : DISTANCE;

REFERENCETRACK : TRACK;

D_RELATION : RELATIONID;

when TRACKCATEGORYFILTER =>

DESIREDTRKCAT : TRACKCATEGORY;

EQRELIDI : EQUALITYRELATIONID;

when PLATFORMIDENTITYFILTER =>

DESIREDPLATID : IDENTITYTYPE;

EQRELID2 : EQUALITYRELATIONID;

end case;

end record;

-- Data structure used to link up all ATOMICFILTERs of an ANDFILTER

type ATOMICFILTERNODE;

type ATOMIC FILTERPTR is access ATOMICFILTERNODE;

type ATOMICFILTERNODE is

record

ATMFILTER : ATOMICFILTER;

NEXTATOMICFILTER ATOMICFILTER PTR;

end record;

type ANDFILTER is

record

FIRSTATOMICFILTER : ATOMICFILTERPTR;

end record;

-- Data structure used to link up all ANDFILTERs of a FILTER

type ANDFILTERNODE;

type AND FILTER PTR is access ANDFILTERNODE;

type ANDFILTERNODE is

record

ANDFLTR : ANDFILTER;

NEXTAND FILTER : AND FILTER PTR;

157

end record;

type FILTER is

record

FIRSTANDFILTER : ANDFILTERPTR;

end record;

-- Each ATOMIC FILTER within the FILTER is written to the DIRECT IO file

-- in the record format below

type ATOMICFILTEROUT is

record

FILTERNUM POSITIVE;-- Number of the FILTER that the

-- ATOMIC FILTER belongs to

ANDFILTERNUM : NATURAL; -- Number of the ANDFILTER that the

-- ATOMIC FILTER belongs to

ATOMICFILTUR : ATOMICFILTER;

TIME-OUT : ABSOLUTE TIME;-- Date & time the FILTER was written

-- to the file

end record;

package FILTER INOUT is new DIRECTIO (ATOMIC FILTEROUT);

use FILTERINOUT;

end FILTERPKG;

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

with GLOBALPOSITIONPKG, RELATIVEPOSITIONPKG, UNCHECKEDDEALLOCATION,

ABSOLUTETIMEPKG, RELATIVETIMEPKG, TEXT_10;

use GLOBAL POSITIONPKG, RELATIVEPOSITIONPKG, ABSOLUTETIMEPKG,

RELATIVE TIME PKG;

158

package body FILTERPKG is

........................... MAKEDISTANCEATOMICFILTER

procedure MAKE DISTANCEATOMICFILTER

(DAFATTRIBID : in DISTANCEATTRIBUTEID;

DAFLIMIT : in DISTANCE;

DAFREFTRACK in TRACK;

DAFRELATION in RELATIONID;

ATOMICFILTUR out ATOMICFILTER) is

begin

ATOMICFILTUR.DATTRIBID := DAF ATTRIBID;

ATOMICFILTUR.DLIMIT := DAFLIMIT;

ATOMICFILTUR.REFERENCETRACK := DAFREFTRACK;

ATOMICFILTUR.DRELATION := DAFRELATION;

end MAKEDISTANCEATOMICFILTER;

....................... MAKETRACKCATEGORYATOMICFILTER

procedure MAKETRACKCATEGORYATOMIC FILTER

(TCAFDESIREDTRKCAT : in TRACKCATEGORY;

TCAFEQRELID in EQUALITYRELATIONID;

ATOMICFILTUR out ATOMIC FILTER) is

TCAF : ATOMICFILTER (TRACKCATEGORYFILTER);

begin

TCAF.DESIREDTRKCAT TCAFDESIREDTRKCAT;

TCAF.EQRELIDI := TCAF EQRELID;

ATOMICFILTUR := TCAF;

end MAKETRACKCATEGORYATOMICFILTER;

...................... MAKEPLATFORMIDENTITYATOMICFILTER

procedure MAKEPLATFORMIDENTITYATOMICFILTER

PIAFDESIRED PLATID : in IDENTITYTYPE;

159

PIAFEQRELID : in EQUALITYRELATIONID;

ATOMICFILTUR : out ATOMICFILTER) is

PIAF : ATOMICFILTER (PLATFORMIDENTITY FILTER);

begin

PIAF.DESIREDPLAT ID PIAFDESIREDPLAT ID;

PIAF.EQRELID2 := PIAFEQRELID;

ATOMICFILTUR := PIAF;

end MAKEPLATFORMIDENTITYATOMICFILTER;

.......................... ADDATOMICFILTER TO AND FILTER

procedure ADDATOMICFILTERTOANDFILTER

(ATOMICFILTUR : in ATOMICFILTER;

ANDFILTUR : in out ANDFILTER) is

ATOMICFILTURPTR ATOMICFILTERPTR;

begin

ATOMICFILTURPTR new ATOMICFILTERNODE;

ATOMICFILTURPTR.ATMFILTER := ATOMICFILTUR;

-- If the newly-created ATOMICFILTER is the first to be added to the

-- current ANDFILTER, its position is recorded as such in the

ANDFILTER.

-- All subsequent ATOMIC FILTERs are appended to the head of the

-- ANDFILTER linked list of ATOMICFILTERs

if AND FILTUR.FIRST ATOMIC FILTER /= null then

ATOMICFILTURPTR.NEXTATOMICFILTER := ANDFILTUR.FIRSTATOMICFILTER;

end if;

ANDFILTUR.FIRSTATOMICFILTER := ATOMICFILTUR PTR;

end ADDATOMICFILTER TO ANDFILTER;

160

............................. ADD ANDFILTER TO FILTER

procedure ADDANDFILTERTOFILTER

(ANDFILTUR : in out ANDFILTER;

FILTUR : in out FILTER) is

AFP ANDFILTERPTR;

ANF AND-FILTER := ANDFILTUR;

begin

AFP := new ANDFILTERNODE;

AFP.ANDFLTR := ANF;

-- If the newly-filled ANDFILTER is the first to be added to the

-- current FILTER, its position is recorded as such in the FILTER.

-- All subsequent ANDFILTERs are appended to the head of the

-- FILTER linked list of ANDFILTERs

if FILTUR.FIRST AND FILTER /= null then

AFP.NEXTANDFILTER := FILTUR.FIRSTANDFILTER;

end if;

FILTUR.FIRSTANDFILTER := AFP;

ANDFILTUR.FIRSTATOMICFILTER := null; -- Reset for new ANDFILTER

end ADDANDFILTERTOFILTER;

................................. CLEAR FILTER

procedure CLEAR FILTER

(F : in out FILTER) is

procedure FREEATOMICFILTER is

new UNCHECKED_5EALLOCATION(ATOMICFILTERNODE, ATOMICFILTER PTR);

procedure FREE ANDFILTER is

new UNCHECKEDDEALLOCATION(ANDFILTERNODE, ANDFILTERPTR);

ATFP ATOMICFILTERPTR;

161

ANFP ANDFILTERPTR;

NEXTATOMICPTR : ATOMICFILTERPTR;

NEXTANDPTR : ANDFILTERPTR;

begin

-- Don't bother clearina an already empty FILTER

if F.FIRST AND FILTER = null then

return;

else

-- Start the clear operation at the first ANDFILTER

ANFP := F.FIRSTANDFILTER;

-- Keep clearing until no more ANDFILTERs

while ANFP /= null loop

NEXTANDPTR := ANFP.NEXTANDFILTER;

-- Get the first ATOMIC FILTER of this AND FILTER

ATFP := ANFP.ANDFLTR.FIRSTATOMICFILTER;

-- Clear all the ATOMIC FILTERs of this ANDFILTER

while ATFP /= null loop

NEXTATOMICPTR := ATFP.NEXTATOMICFILTER;

FREEATOMICFILTER (ATFP);

ATFP := NEXTATOMICPTR;

end loop;

-- Clear the AND FILTER

FREE AND FILTER (ANFP);

-- Get the next ANDFILTER

ANFP := NEXTANDPTR;

end loop;

end if;

F.FIRSTANDFILTER := null;

162

end CLEARFILTER;

............................. CREATE FILTER FILE

procedure CREATEFILTERFILE is

FILTERFILE : FILTERINOUT.FILETYPE; -- Archive file

begin

FILTERINOUT.CREATE (FILTER_FILE, INOUTFILE, "FILTERFILE");

FILTERINOUT.CLOSE (FILTERFILE);

end CREATEFILTERFILE;

................................ WRITE FILTER

procedure WRITE FILTER

(F : in FILTER) is

FILTERFILE : FILTERINOUT.FILETYPE; -- Archive file

FLTR NUM POSITIVE;-- Number of FILTERs in archive

FINDEX NATURAL;-- Write index

ANDFLTRNUM : NATURAL := 1;-- Number of AND FILTERS

ATOMIC FLTROUT : ATOMICFILTEROUT;-- Archive element structure

ATFP ATOMICFILTERPTR;

ANFP ANDFILTER_PTR;

WRITETIME ABSOLUTE TIME := NOW;-- Time of write operation

AFOUT : ATOMICFILTEROUT;

begin

-- Open archive file & find end of file to determine where to write the

-- next FILTER

FILTERINOUT.OPEN (FILTER_FILE, INOUT_FILE, "FILTERFILE");

FINDEX := NATURAL (FILTERINOUT.SIZE (FILTERFILE)) + 1;

-- Read list FILTER in file to get its FILTER number, then add 1 to
a;sign

-- new FILTER number

if FILTER INOUT.SIZE (FILTERFILE) > 0 then

FILTERINOUT.READ (FILTERFILE, AF_OUT, POSITIVE-COUNT

163

(SIZE (FILTERFILE)));

FLTRNUM= AFOUT.FILTERNUM + I;

else

FLTRNUM 1;

end if;

-- Set write index

FILTERINOUT.SETINDEX (FILTER FILE, POSITIVECOUNT (FINDEX));

-- Get first AND FILTER

ANFP := F.FIRSTANDFILTER;

-- Assign values to output structure

ATOMICFLTROUT.FILTERNUN := FLTRNUN;

ATOMICFLTROUT.TIME OUT := WRITE TIME;

-- There will be no ANDFILTERs if the FILTER is set to accept all

TRACKs

if ANFP = null then

ATOMICFLTROUT.ANDFILTER NUM := 0;

FILTERINOUT.WRITE (FILTERFILE, ATOMICFLTROUT,

POSITIVECOUNT (FINDEX) ;

else

-- While there are still ANDFILTERs left to write

while ANFP /= null loop

-- Assign ANDFILTER number to output structure

ATOMICFLTROUT.ANDFILTERNUM := ANDFLTRNUM;

-- Get first ATOMIC FILTER of this AND FILTER

ATFP := ANFP.ANDFLTR.FIRSTATOMICFILTER;

-- While there are still ATOMICFILTERs left to write

while ATFP /= null loop

-- Assign ATOMICFILTER to output structure

ATOMICFLTROUT.ATOMICFILTUR := ATFP.ATMFILTER;

-- Write output structure to archive file

FILTERINOUT.WRITE (FILTERFILE, ATMICFLTROUT,

164

POSITIVE COUNT (F INDEX))

-- Increment write index

FINDEX := FINDEX + I;

-- Get next ATOMICFILTER

ATFP := ATFP.NEXTATOMICFILTER;

end loop;

-- Increment ANDFILTER number for next AND FILTER

ANDFLTRNUM := ANDFLTRNUM + 1;

-- Get next AND FILTER

ANFP := ANFP.NEXTANDFILTER;

end loop;

end if;

FILTERINOUT.CLOSE (FILTER FILE);

end WRITEFILTER;

................................ TEST_ F ILTER

function TEST FILTER

(F : FILTER;

T TRACK) return BOOLEAN is

B BOOLEAN := FALSE;

AF ATOMICFILTER;

ATFP ATOMICFILTER_PTR;

ANFP ANDFILTER_PTR;

-- Tests input TRACK against one ATOMIC FILTER and returns the result

function TEST ATOMIC FILTER

(ATF : ATOMIC FILTER) return BOOLEAN is

TGT POS GLOBALPOSITION;

REFP0S GLOBAL-POSITION;

165

TCATEG : TRACKCATEGORY := TRK CATEGORY (T ;

TID : IDENTITYTYPE;

begin

case ATF.FILTERTYPE is

-- ATOMIC FILTER based on distance-type attributes

when DISTANCEFILTER =>

case ATF.DATTRIBID is

-- Distance-type attribute is range from a reference TRACK

when RANGEFROM REFERENCE TRACK =>

-- Get reference & target positions

REFPO: CURRENTPOSITION (ATF.REFERENCETRACK);

TGT POS CURRENT POSITION (T);

case ATF.DRELATION is

-- Range from reference TRACK must be equal to the input

-- parameter value in order to pass

when EQUAL =>

if RANGEOF (FINDRELATIVE POSITION

(TGT POS, REFPOS)) = ATF.DLIMIT then

return TRUE;

else

return FALSE;

end if;

-- Range from reference TRACK must not be equal to the input

-- parameter value in order to pass

when NOT EQUAL =>

if RANGEOF (FIND RELATIVE POSITION

(TGT POS, REFPOS)) /= ATF.D LIMIT then

return TRUE;

else

return FALSE;

end if;

166

-- Range from reference TRACK must be less than the input

-- parameter value in order to pass

when LESS =>

if RANGEOF (FINDRELATIVEPOSITION

(TGTPOS, REFPOS)) < ATF.DLIMIT then

return TRUE;

else

return FALSE;

end if;

-- Range from reference TRACK must be less than or equal to the

-- input parameter value in order to pass

when LESSOREQUAL =>

if RANGEOF (FINDRELATIVEPOSITION

(TGT POS, REFPOS)) <= ATF.D LIMIT then

return TRUE;

else

return FALSE;

end if;

-- Range from reference TRACK must be greater than the input

-- parameter value in order to pass

when GREATER =>

if RANGEOF (FINDRELATIVEPOSITION

(TGTPOS, REFPOS)) > ATF.D LIMIT then

return TRUE;

else

return FALSE;

end if;

-- Range from reference TRACK must be greater than or equal to

-- the input parameter value in order to pass

when GREATER OR EQUAL =>

if RANGEOF (FINDRELATIVEPOSITION

TGTPOS, REF POS)) >= ATF.D LIMIT then

return TRUE;

else

return FALSE;

end if;

end case;

167

-- Distance-type attribute is altitude

when ALTITUDE =>

-- Since altitude applies only to aircraft, others will fail this

-- test

if TRK CATEGORY (T /= AIR PLATFORM then

return FALSE;

end if;

case ATF.DRELATION is

-- Altitude must be equal to the input parameter value in order

-- to pass

when EQUAL =>

if ALTITUDE (T) ATF.D LIMIT then

return TRUE;

else

return FALSE;

end if;

-- Altitude must not be equal to the input parameter value in

-- order to pass

when NOTEQUAL =>

if ALTITUDE (T) /= ATF.D LIMIT then

return TRUE;

else

return FALSE;

end if;

-- Altitude must be less than the input parameter value in order

-- to pass

when LESS =>

if ALTITUDE (T) < ATF.DLIMIT then

return TRUE;

else

return FALSE;

end if;

-- Altitude must be less than or equal to the input parameter

-- value in order to pass

168

when LESSOREQUAL =>

if ALTITUDE (T) <= ATF.D LIMIT then

return TRUE;

else

return FALSE;

end if;

-- Altitude must be greater than the input parameter value in

-- order to pass

when GREATER =>

if ALTITUDE (T) > ATF.D LIMI1T then

return TRUE;

else

return FALSE;

end if;

-- Altitude must be greater than or equal to the input parameter

-- value in order to pass

when GREATER OR EQUAL =>

if ALTITUDE (T) >= ATF.DLIMIT then

return TRUE;

else

return FALSE;

end if;

end case;

end case;

-- ATOMIC FILTER based on category-type attributes

when TRACKCATEGORYFILTER =>

case ATF.EQREL_IDI is

-- TRACKCATEGORY must be equal to the input parameter value in

-- order to pass

when EQUAL =>

if TCATEG = ATF.DESIREDTRKCAT then

return TRUE;

else

return FALSE;

169

end if;

-- TRACKCATEGORY must not be equal to the input parameter value

in order to pass

when NOT EQUAL =>

if T CATEG /= ATF.DESIREDTRKCAT then

return TRUE;

else

return FALSE;

end if;

end case;

-- ATOMIC FILTER based on category-type attributes

when PLATFORMIDENTITY FILTER =>

-- IDENTITY applies only to platforms below

if (TCATEG = SURFACEPLATFORM) OR

T CATEG = SUBSURFACE PLATFORM) OR

TCATEG = AIR PLATFORM) then

T ID := TRACKIDENTITY (T);

case ATF.EQRELID2 is

-- IDENTITYTYPE must be equal to the input parameter value

-- in order to pass

when EQUAL =>

if T ID = ATF.DESIREDPLATID then

return TRUE;

else

return FALSE;

end if;

-- IDENTITY-TYPE must not be equal to the input parameter value

-- in order to pass

when NOTEQUAL =>

if TID /= ATF.DESIREDPLAT ID then

return TRUE;

else

return FALSE;

170

end if;

end case;

else -- Non-applicable TRACK types

-- Since IDENTITY doesn't apply to other TRACKs, if the

-- ATOMICFILTER requires an equality relation to an IDENTITY

-- it must always fail. Likewise, a non-equal parameter must

-- always succeed.

if ATF.EQRELID2 = EQUAL then

return FALSE;

else

return TRUE;

end if;

end if;

end case;

end TESTATOMICFILTER;

begin -- TESTFILTER

-- All TRACKs pass an 'EVERYTHINS' FILTER

if F = EVERYTHING then

return TRUE;

else

-- Get first AND FILTER

ANFP := F.FIRSTANDFILTER;

-- Test all ANDFILTERs (if necessary

while ANFP /= null loop

-- Get first ATOMIC FILTER of this AND FILTER

ATFP := ANFP.AND FLTR.FIRSTATOMICFILTER;

-- Test all ATOMICFILTERs of this ANDFILTER (if necessary

while ATFP /= null loop

171

AF ATFP.ATMFILTER;

-- Test the TRACK against this ATOMICFILTER

B TESTATOMICFILTER (AF);

-- A failure of one ATOMIC FILTER in an ANDFILTER constitutes a

-- failure of the entire AND FILTER, so move on to the next

-- AND FILTER

if B = FALSE then

exit;

end if;

-- Get next ATOMIC FILTER (previous one passed

ATFP := ATFP.NEXTATOMICFILTER;

end loop;

-- If the TRACK passed all ATOMIC FILTERs of the previous AND-FILTER,

-- no need to continue. It passes the FILTER.

if B = TRUE then

return B;

end if;

-- TRACK did noc pass the previous ANDFILTER, so get the next one.

ANFP := ANFP.NEXTANDFILTER;

end loop;

end if;

return B;

end TEST FILTER;

................................. EVERYTHING

function EVERYTHING return FILTER is

F : FILTER;

begin

172

return F;

end EVERYTHING;

....................... WRITE FILTERARCHIVESTOTEXT FILE

procedure WRITEFILTERARCHIVES TOTEXTFILE is

AF ATOMICFILTER;

FC FILTERCATEGORY;

TC TRACKCATEGORY;

PID IDENTITYTYPE;

RID RELATIONID;

EQ EQUALITYRELATIONID;

FILTERFILE : FILTERINOUT.FILE TYPE;-- Archive file

FILTERHISFILE : TEXTIO.FILETYPE;-- Text file of all FILTERs

FLTRNUM POSITIVE;-- FILTER number in file

FINDEX NATURAL;

ANDFLTRNUM : NATURAL;-- ANDFILTER number in FILTER

ATOMICFLTROUT : ATOMICFILTEROUT;

WRITETIME : ABSOLUTETIME;-- Time FILTER archived

FINISHED : BOOLEAN := FALSE;-- Flags when no more FILTERs

DASHES : STRING (l.. 80) := (others => '='

-- Writes time of archive to text file

procedure PRINT TIME OUT is

Y, M, D : NATURAL;

S : FLOAT;

begin

Y YEAR (WRITE TIME);

M MONTH (WRITE TIME);

D DAY (WRITE TIME);

S TIMEOFDAY (WRITETIME);

TEXTIO.PUT (FILTERHISFILE, NATURAL'IMAGE (M));

TEXTIO.PUT (FILTERHISFILE, "I");

TEXTIO.PUT (FILTERH SFILE, NATURAL'IMAGE (D));

TEXTIO.PUT (FILTERHISFILE, "/");

173

TEXTIO.PUT (FILTER_HISFILE, NATURAL'IMAGE (Y - 1900));

TEXTIO.PUT (FILTERHISFILE, ".);

TEXTIO.PUT (FILTERHISFILE, NATURAL'IMAGE

(HOURS (TIMEOFDAY (WRITETIME))));

TEXTIO.PUT (FILTERHISFILE, ':');

TEXTIO.PUT (FILTERHISFILE, NATURAL'IMAGE

(MINUTES (TIME OF DAY (WRITE TIME))));

TEXTIO.PUT (FILTERHISFILE, ':');

TEXTIO.PUT (FILTERHISFILE, NATURAL'IMAGE

(NATURAL (SECONDS (TIMEOFDAY (WRITETIME)))));

end PRINTTIMEOUT;

begin -- WRITEFILTERARCHIVESTOTEXTFILE

-- Open archive & create text files

FILTERINOUT.OPEN (FILTERFILE, INOUTFILE, "FILTERFILE");

TEXTIO.CREATE (FILTERHISFILE, NAME => "FILTER.HIS");

-- Read in first archived FILTER

FILTERINOUT.READ (FILTERFILE, ATOMICFLTROUT);

-- Read in all archived FILTERs and convert them to human-readable
format

-- for output to text file

while NOT FINISHED loop

FLTRNUM := ATOMICFLTROUT.FILTERNUM;

WRITETIME ATOMICFLTROUT.TIMEOUT;

TEXTIO.PUT (FILTERHISFILE, "FILTER NUMBER :");

TEXTIO.PUT (FILTERHISFILE, POSITIVE'IMAGE (FLTR NUM));

TEXTIO.SETCOL (FILTERHISFILE, 35);

PRINTTIMEOUT;

TEXTIO.NEWLINE (FILTERHISFILE, 2 ;

while (FLTRNUM = ATOMICFLTROUT.FILTERNUM) AND (NOT FINISHED
loop

ANDFLTRNUM := ATOMICFLTROUT.ANDFILTERNUM;

if AND FLTR NUM = 0 then

TEXTIO.PUTLINE (FILTERHISFILE, " ALL TRACKS ACCEPTED");

TEXT IO.NEWLINE (FILTERHISFILE);

174

if NOT FILTERINOUT.ENDOFFILE (FILTERFILE) then

FILTERINOUT.READ (FILTERFILE, ATOMICFLTROUT);

else

FINISHED := TRUE;

end if;

else

TEXTIO.PUT (FILTERHISFILE, " ANDFILTER NUMBER :");

TEXTIO.PUT (FILTERHISFILE, POSITIVE'IMAGE (ANDFLTRNUM));

TEXT IO.NEWLINE (FILTERHISFILE);

while (ANDFLTR NUM = ATOMICFLTROUT.AND FILTERNUM) AND

(NOT FINISHED) loop

AF ATOMICFLTROUT.ATOMICFILTUR;

FC AF.FILTERTYPE;

TEXTIO.SETCOL (FILTERHISFILE, 7);

case FC is

when DISTANCE FILTER =>

RID := AF.DRELATION;

if AF.D ATTRIB ID = RANGEFROMREFERENCETRACK then

TEXTIO.PUT (FILTERHISFILE, "RANGE FROM REFERENCE TRACK");

TEXTIO.PUT (FILTERHISFILE, NATURAL'IMAGE

(TRACKIDNUMBER (AF.REFERENCETRACK)));

else

TEXTIO.PUT (FILTERHISFILE, "ALTITUDE");

end if;

case RID is

when EQUAL =>

TEXTIO.PUT (FILTERHISFILE, " ="

when NOTm EQUAL =>

TEXTIO.PUT (FILTERHISFILE, " <>");

when LESS =>

TEXTIO.PUT (FILTERHIS FILE, " <");

when LESSOREQUAL =>

TEXTIO.PUT (FILTERHISFILE, " <=");

when GREATER =>

TEXTIO.PUT (FILTER HIS FILE, " >");

175

when GREATER OR EQUAL =>

TEXTIO.PUT (FILTERHIS FILE, " >=");

end case;

TEXTIO.PUT (FILTERHISFILE, NATURAL'IMAGE (NATURAL

(AF.DLIMIT)));

TEXTIO.PUTLINE (FILTERHISFILE, " yards");

when TRACK CATEGORY FILTER =>

TC AF.DESIREDTRK_CAT;

EQ AF.EQ_REL_IDi;

TEXTIO.PUT (FILTERHIS FILE, "TRACK CATEGORY");

case EQ is

when EQUAL =>

TEXT_IO.PUT (FILTERHIS FILE, " = "

when NOT_EQUAL =>

TEXT IO.PUT (FILTERHISFILE, " <>"

end case;

case TC is

when TRACKPKG.UNKNOWN =>

TEXTIO.PUT (FILTERHISFILE, "UNKNOWN");

when SURFACEPLATFORM =>

TEXTIO.PUT (FILTERHIS FILE, "SURFACE-PLATFORM");

when SUBSURFACEPLATFORM =>

TEXT IO.PUT (FILTERHISFILE, "SUBSURFACEPLATFORM");

when AIRPLATFORM =>

TEXT IO.PUT (FILTERHISFILE, "AIRPLATFORM");

when REGION =>

TEXT IO.PUT (FILTERHISFILE, "REGION");

when SPECIALPOINT =>

TEXTIO.PUT FILTERHIS FILE, "SPECIALPOINT");

when PATH =>

TEXTIO.PUT FILTERHISFILE, "PATH");

when MANINWATER =>

TEXTIO.PUT (FILTERHISFILE, "MANINWATER");

when NONDISPLAYABLE =>

TEXTIO.PUT (FILTERHISFILE, "NONDISPLAYABLE");

end case;

176

TEXTIO.NEW LINE (FILTERHISFILE);

when PLATFORMIDENTITY FILTER =>

PID AF.DESIREDPLATID;

EQ AF.EQRELID2;

TEXTIO.PUT (FILTERHISFILE, "PLATFORM IDENTITY");

case EQ is

when EQUAL =>

TEXTIO.PUT (FILTERHISFILE, " "

when NOTEQUAL =>

TEXTIO.PUT (FILTER_-HIS_FILE, " <> "

end case;

case PID is

when TRACK PKG.UNKNOWN =>

TEXTIO.PUT (FILTERHISFILE, "UNKNOWN"

when FRIENDLY =>

TEXTIO.PUT (FILTERHISFILE, "FRIENDLY");

when HOSTILE =>

TEXTIO.PUT (F:LTERHIS FILE, "HOSTILE" ;

when NEUTRAL =>

TEXTIO.PUT (FILTERHISFILE, "NEUTRAL" ;

end case;

TEXTIO.NEW LINE (FILTER HIS FILE);

end case;

if NOT FILTER INOUT.END OF FILE (FILTER FILE) then

FILTERINOUT.READ (FILTERFILE, ATOMIC FLTROUT);

else

FINISHED := TRUE;

end if;

end loop;

TEXTIO.NEWLINE (FILTERHISFILE);

end if;

177

end loop;

TEXTIO.PUTLINE (FILTER HISFILE, DASHES);

end loop;

FILTERINOUT.CLOSE (FILTERFILE);

TEXTIO.CLOSE (FILTERHISFILE);

end WRITEFILTERARCHIVESTOTEXTFILE;

. .

end FILTERPKG;

178

APPENDIX E

CPA PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date 29 August 1991

-- Description : efines data type CPATYPE and associated function
FINDCPA

with VECTOR_2_PKG, ABSOLUTE TIMEPKG, TRACK PKG;

use VECTOR 2 PKG, ABSOLUTE TIME PKG, TRACK PKG;

package CPAPKG is

type CPA TYPE is

record

CPA BEARINGANDRANGE : VECTOR_2; -- Bearing & range to target from

-- reference at CPA

TIMEOFCPA : ABSOLUTE TIME; -- Time when CPA occurs

end record;

-- Finds Closest Point of Approach of target track to the reference

track

function FIND CPA

(TARGETTRK, REFERENCE TRACK : TRACK) return CPA TYPE;

pragma INLINE (FIND CPA);

end CPA PKG;

179

with ANGLE PKG, SPEEDPKG, DISTANCEPKG, GLOBALPOSITIONPKG,
RELATIVE_TIMEPKG,

VELOCITYPKG, RELATIVEPOSITIONPKG, MATH;

use ANGLEPKG, SPEEDPKG, DISTANCEPKG, GLOBALPOSITIONPKG,
RELATIVETIMEPKG,

VELOCITYPKG, RELATIVEPOSITIONPKG;

package body CPAPKG is

function FIND CPA

(TARGETTRK, REFERENCETRACK : TRACK) return CPA-TYPE is

CPATOTARGET : CPATYPE;

TGTBEARING : ANGLE;-- true brg to target

TGTRANGE : DISTANCE;-- range to target (yds)

TGTRELSPEED SPEED;-- rel spd of target

TGTRELCOURSE ANGLE;-- rel crs of target

PERPENDICULAR_1,-- perp of tgt rel crs

PERPENDICULAR_2 : ANGLE;-- perp of tgt rel crs

PIDIFF, -- diff bet tgt rel crs

P2_DIFF : ANGLE;-- & the perpendiculars

CPABEARING : ANGLE;-- bearing to target at cpa

CPARANGE DISTANCE;-- range to target at cpa

CPATIME RELATIVETIME;-- time in secs to cpa

ALPHA ANGLE;-- angle bet bearing to

-- tgt & bearing to cpa

BRAVO ANGLE;-- angle bet bearing to

-- tgt & tgt rel crs

RELVELOCITY : VELOCITY;

LASTTGTPOSITION,

LASTREFPOSITION,

OPENINGPOSTGT,

OPENING_POSREF : GLOBALPOSITION;

OPENINGRG : DISTANCE;

OBSTIME : ABSOLUTETIME := NOW;

begin

180

-- Get current positions of target & reference tracks

LASTREFPOSITION CURRENTPOSITION (REFERENCETRACK);

LASTTGTPOSITION CURRENTPOSITION (TARGETTRK);

-- Find present bearing & range to target

TGT BEARING := BEARINGTO (FINDRELATIVEPOSITION

(LASTTGTPOSITION, LASTREFPOSITION));

TGTRANGE := RANGEOF (FINDRELATIVEPOSITION

(LASTTGTPOSITION, LASTREFPOSITION));

-- Get target's relative course & speed

REL VELOCITY := TARGETRELATIVEVELOCITY (REFERENCETRACK, TARGET TRK

TGTRELCOURSE COURSE (RELVELOCITY);

TGTRELSPEED SPD (REL VELOCITY);

-- Get target's & reference's position again to determine if they

-- are opening one another

OPENING POS REF CURRENT POSITION (REFERENCE TRACK);

OPENING POS TGT CURRENT POSITION (TARGETTRK);

OPENINGRG := RANGEOF (FINDRELATIVEPOSITION

(OPENINGPOSTGT, OPENINGPOSREF));

-- If target & reference are opening or if the target has no relative

speed,

-- no CPA possible

if (OPENINGRG > TGTRANGE) or (TGTREL SPEED = 0.0) then

CPABEARING := TGTBEARING;

CPARANGE TGT RANGE;

CPA TIME 0.0;

else

-- The bearing to the target at cpa will be 90 degrees +/- the target's

-- relative course. The problem is finding out which one applies. To

-- determine the correct one, computations are made on both
perpendiculars

-- The perpendicular closest to the target's bearing is the cpa bearing.

-- Subtract 90 degrees from target's relative course to get perpl

PERPENDICULAR 1 := TGT RELCOURSE - MATH.PI / 2.0;

181

-- If target's relative course < 270, add 90 degrees to get perp2,

-- otherwise subtract 90 degrees

if TGTRELCOURSE < MATH.PI * 3.0 / 2.0 then

PERPENDICULAR_2 TGTRELCOURSE + MATH.PI / 2.0;

else

PERPENDICULAR 2 PERPENDICULAR_1 - MATH.PI;

end if;

-- If computed perpl is negative, add 360 degrees to correct

if PERPENDICULAR 1 < 0.0 then

PERPENDICULAR_1 := MATH.PI * 2.0 + PERPENDICULAR_1;

end if;

-- If computed perp2 is negative, add 360 degrees to correct

if PERPENDICULAR_2 < 0.0 then

PERPENDICULAR_2 := MATH.PI * 2.0 + PERPENDICULAR_2;

end if;

-- Compute absolute difference between target's bearing & perpl

P1_DIFF := ABS (TGTBEARING - PERPENDICULAR_1);

-- If difference is > 180 degrees in one direction, it is < 180 in

-- the other direction, so choose the shortest one

if P1_DIFF > MATH.PI then

P1_DIFF := MATH.PI * 2.0 - P1_DIFF;

end if;

-- Compute absolute difference between target's bearing & perp2

P2_DIFF := ABS (TGTBEARING - PERPENDICULAR_2);

-- If difference is > 180 degrees in one direction, it is < 180 in

-- the other direction, so choose the shortest one

if P2_DIFF > MATH.PI then

P2_DIFF := MATH.PI * 2.0 - P2_DIFF;

end if;

-- The smallest difference determines the correct perpendicular to use

-- as cpa bearing

if P1_DIFF < P2_DIFF then

CPABEARING PERPENDICULAR_1;

182

elsif Pl DIFF > P2_DIFF then

CPABEARING PERPENDICULAR_2:

else

-- ** CBDR ** (Constant Bearing, Decreasing Range) Crash coming!

CPABEARING TGTBEARING;

end if;

-- Need to find angle between cpa bearing and target's current bearing

-- so we can compute the distance from target's current position and

-- its position at cpa

ALPHA := ABS (CPABEARING - TGTBEARING);

-- If the angie is > 180 degrees in one direction, it is < 180 in

-- the other direction, so choose the shortest one

if ALPHA > MATH.PI then

ALPHA := MATH.PI * 2.0 - ALPHA;

end if;

-- The angle between the target's relative course and its bearing at cpa

-- is 90 degrees. We just computed a second angle (ALPHA) of the

-- triangle, so the remaining angle of the triangle is 90 degrees minus

-- ALPHA. This angle (BRAVO) gives us the angle between the target's

-- relative course and the true bearing to the target.

BRAVO := MATH.PI / 2.0 - ALPHA;

-- Compute range to target at cpa and time of cpa

if ALPHA = 0.0 then -- ** CBDR **

CPATIME := TGTRANGE / TGTRELSPEED;

CPARANGE := 0.0;

else

CPARANGE TGT RANGE * DISTANCE (SIN (BRAVO));

-- Pythagorean Theorem used

CPATIME := SQRT (TGTRANGE * TGTRANGE - CPARANGE * CPA RANGE) /

TGTRELSPEED;

end if;

end if;

CPATOTARGET.CPABEARINGAND RANGE := MAKEPOLARVECTOR2

CPARANGE, CPABEARING);

183

CPATOTARGET.TIMEOFCPA CPA-TIME + OBSTIME;

return CPATOTARGET;

end FIND-CPA;

end CPAPKG;

184

APPENDIX F

VELOCITY PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

-- Description : Defines data subtype VELOCITY and associated functions

with VECTOR_2_PKG, SPEEDPKG, ANGLEPKG;

use VECTOR_2_PKG, SPEEDPKG, ANGLEPKG;

package VELOCITYPKG is

subtype VELOCITY is VECTOR_2;-- Course and speed vector

-- Returns course & speed vector, given course & speed values

function MAKEVELOCITY

(SPD SPEED;

COURSE ANGLE) return VELOCITY renames
VECTOR_2_PKG.MAKEPOLARVECTOR_2;

-- Returns course attribute of a velocity vector

function COURSE

V : VELOCITY) return ANGLE renames VECTOR_2_PKG.DIRECTION;

-- Returns speed attribute of a velocity vector

function SPD

185

V : VELOCITY) return SPEED renames VECTOR_2_PKG.LENGTH;

pragma INLINE (MAKEVELOCITY, COURSE, SPD);

end VELOCITYPKG;

186

APPENDIX G

VECTOR 2 PACKAGE

-- Authors Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

-- Description : Defines abstract data type VECTOR_2 and associated
functions

with ANGLEPKG, MATH;

use ANGLEPKG;

package VECTOR_2_PKG is

type VECTOR_2 is private;

function SQRT (F : FLOAT) return FLOAT renames MATH.SQRT;

-- Returns a vector, given a length and an angle in radians

function MAKEPOLARVECTOR_2

(LENGTH FLOAT;

DIRECTION ANGLE) return VECTOR_2;

-- Returns the length attribute of a given VECTOR 2

function LENGTH

V : VECTOR_2) return FLOAT;

187

-- Returns the angle attribute of a given VECTOR_2

function DIRECTION

V : VECTOR_2) return ANGLE;

-- Returns a vector, given its end point in terms of X & Y coordinates

function MAKE CARTESIAN VECTOR_2

X, Y : FLOAT) return VECTOR_2;

-- Returns the X-coordinate of a vector

function X COORDINATE

V : VECTOR_2) return FLOAT;

-- Returns the Y-coordinate of a vector

function Y COORDINATE

V : VECTOR_2) return FLOAT;

-- Returns the resultant sum of 2 vectors

function "+"

Vl, V2 : VECTOR_2) return VECTOR_2;

-- Returns the resultant difference of 2 vectors

function "-"

VI, V2 : VECTOR_2) return VECTOR_2;

-- Returns the resultant dot product of 2 vectors

function DOT PRODUCT

VI, V2 : VECTOR_2) return FLOAT;

-- Returns the resultant product of a vector and a scale factor

function "

V : VECTOR 2;

SCALEFACTOR : FLOAT) return VECTOR_2;

-- Returns a vector rotated about a given angle

function ROTATE

(V : VECTOR 2;

A : ANGLE) return VECTOR_2;

-- Returns a normalized vector

function NORMALIZE

V : VECTOR 2) return VECTOR_2;

188

pra ma INLINE

(MAKEPOLARVECTOR_2, LENGTH, DIRECTION, MAKECARTESIAN VECTOR_2,

XCOORDINATE, YCOORDINATE, "+",, DOT PRODUCT, ROTATE, NORMALIZE);

private

type VECTOR_2 is

record

X, Y : FLOAT;

end record;

ZERO : constant VECTOR 2 0.O, 0.0);

end VECTOR 2 PKG;

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

package body VECTOR 2 PKG is

............................... MA KE POLAR VECTOR 2

function MAKE POLAR VECTOR 2

(LENGTH FLOAT;

DIRECTION ANGLE) return VECTOR 2 is

V : VECTOR_2;

begin

V.X LENGTH * SIN (DIRECTION);

V.Y LENGTH * COS (DIRECTION);

return V;

189

end MAKE_POLARVECTOR_2;

..... LEN GTH

function LENGTH

(V : VECTOR 2) return FLOAT is

begin

return SQRT (V.X * V.X + V.Y * V.Y);

end LENGTH;

................................. D IRECTION

function DIRECTION

(V VECTOR_2) return ANGLE is

X, Y FLOAT;

A : ANGLE;

begin

X V.X;

Y V.Y;

if X = 0.0 then

if Y >= 0.0 then.

return DEGREESTORADIANS (0.0);

else

return DEGREES TO RADIANS (180.0);

end if;

elsif Y / X < 0.0 then -- Either X or Y is negative

if Y < 0.0 then -- Y is negative

return DEGREES TO RADIANS (90.0) - ARCTAN (Y / X ;

else -- X is negative

return DEGREES TO RADIANS (270.0) - ARCTAN (Y / X);

end if;

190

else

if X < 0.0 then -- X and Y are both negative

return DEGREES TO RADIANS (270.0) - ARCTAN (Y / X

else -- X and Y are both positive (Y could be 0.0

return DEGREES TO RADIANS (90.0) - ARCTAN (Y / X);

end if;

end if;

end DIRECTION;

............................ MAKE CARTESIAN VECTOR 2

function MAKE CARTESIAN VECTOR 2

(X, Y : FIOAT) return VECTOR 2 is

V : VECTOR 2;

begin

V.X X;

V.Y Y;

return V;

end MAKE CARTESIAN VECTOR 2;

................................. X_ COORDINATE

function X COORDINATE

V : VECTOR 2) return FLOAT is

begin

return V.X;

end XCOORDINATE;

................................ Y COORDINATE

function Y COORDINATE

(V : VECTOR 2) return FTOAT is

begin

191

return V.Y;

end YCOORDINATE;

. + 1 1¢ .

function "+"

(VI, V2 : VECTOR_2) return VECTOR 2 is

V : VECTOR_2;

begin

V.X VI.X + V2.X;

V.Y V1.Y + V2.Y;

return V;

end "+";

. .oo

function "-"

(VI, V2 : VECTOR_2) return VECTOR 2 is

V : VECTOR_2;

begin

V.X Vi.X - V2.X;

V.Y VI.Y - V2.Y;

return V;

end "-";

................................ DOT PRODUCT

function DOT PRODUCT

VI, V2 : VECTOR_2) return FLOAT is

begin

return VI.X * V2.X + VI.Y * V2.Y;

end DOTPRODUCT;

192

function "*"

(V : VECTOR_2;

SCALEFACTOR : FLOAT) return VECTOR_2 is

V2 : VECTOR_2;

begin

-- Length (result) = length (v) * scalefactor

-- Direction (result) = direction v

V2.X := V.X * SCALEFACTOR;

V2.Y := V.Y * SCALEFACTOR;

return V2;

end

.................................. ROTATE

function ROTATE

(V : VECTOR_2;

A ANGLE) return VECTOR_2 is

D ANGLE;

V2 VECTOR_2;

begin

-- Direction (result) = direction (v) + a

-- Length (result = length (v

D := DIRECTION (V + A;

V2.X := LENGTH (V * SIN (D);

V2.Y := LENGTH (V * COS (D);

return V2;

end ROTATE;

193

................................. NORMALIZE

function NORMALIZE

(V : VECTOR_2) return VECTOR_2 is

D ANGLE;

V2 VECTOR_2;

begin

-- Direction (result) = direction (v

-- Length (result) = 1.0

D := DIRECTION (V);

V2.X := COS (D);

V2.Y SIN (D);

return V2;

end NORMALIZE;

... °...

end VECTOR_2_PKG;

194

APPENDIX H

VECTOR 3 PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

o °. ..

-- Description : Defines abstract data type VECTOR_3 and associated
functions

with ANGLEPKG, MATH;

use ANGLEPKG;

package VECTOR_3_PKG is

type VECTOR_3 is private;

function SQRT (F : FLOAT) return FLOAT renames MATH.SQRT;

-- Returns a vector, given a length, an angle in radians, and an azimuth

-- in radians

function MAKEPOLARVECTOR_3

(LENGTH : FLOAT;

THETA : ANGLE;

PHI : AZIMUTH) return VECTOR_3;

-- Returns the length attribute of a given VECTOR_2

function LENGTH

195

(V : VECTOR_3) return FLOAT;

function THETA

V : VECTOR_3) return ANGLE;

function PHI

V : VECTOR_3) return AZIMUTH;

-- Returns a vector, given its end point in terms of X, Y, & Z
coordinates

function MAKE CARTESIANVECTOR_3

X, Y, Z FLOAT) return VECTOR_3;

-- Returns the X-coordinate of a vector

function X COORDINATE

V : VECTOR_3) return FLOAT;

-- Returns the Y-coordinate of a vector

function Y COORDINATE

V : VECTOR_3) return FLOAT;

-- Returns the Z-coordinate of a vector

function Z COORDINATE

V : VECTOR_3) return FLOAT;

-- Returns the resultant sum of 2 vectors

function "+"

VI, V2 : VECTOR_3) return VECTOR_3;

-- Returns the resultant difference of 2 vectors

function I-"

VI, V2 : VECTOR_3) return VECTOR_3;

-- Returns the resultant dot product of 2 vectors

function DOT PRODUCT

VI, V2 : VECTOR_3) return FLOAT;

function CROSS PRODUCT
VI, V2 VECTOR_3) return VECTOR_3;

-- Length (result) = length (v) scale-factor

196

function SCALE

(V : VECTOR_3;

SCALEFACTOR : FLOAT) return VECTOR_3;

-- Returns a normalized vector

-- length (result) = 1.0

function NORMALIZE

(V : VECTOR_3) return VECTOR_3;

pragma INLINE (MAKEPOLARVECTOR_3, LENGTH, THETA, PHI,

MAKECARTESIANVECTOR_3, XCOORDINATE, YCOORDINATE,

ZCOORDINATE, "- DOT PRODUCT, CROSS PRODUCT, SCALE,

NORMALIZE);

private

type VECTOR 3 is

record

X, Y, Z : FLOAT;

end record;

ZERO : constant VECTOR 3 (0.0, 0.0, 0.0);

end VECTOR_3_PKG;

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

package body VECTOR 3 PKG is-

............................... MAKE POLAR VECTOR_ 3

function MAKE POLARVECTOR_3

(LENGTH : FLOAT;

THETA ANGLE;

197

PHI : AZIMUTH) return VECTOR 3 is

V : VECTOR_3;

R : FLOAT;

begin

R := LENGTH * COS (PHI);

V.X R * COS (THETA);

V.Y R * SIN (THETA);

V.Z LENGTH * SIN (PHI);

return V;

end MAKEPOLARVECTOR_3;

.................................... LENGTH

function LENGTH

(V : VECTOR_3) return FLOAT is

R : FLOAT;

begin

R := SQRT (V.X * V.X + V.Y * V.Y);

return SQRT (R * R + V.Z * V.Z);

end LENGTH;

.................................... THETA

function THETA

(V : VECTOR_3) return ANGLE is

begin

return ARCTAN (V.Y / V.X);

end THETA;

..........P H I

function PHI

(V : VECTOR_3) return AZIMUTH is

R : FLOAT;

198

begin

R := SQRT (V.X * V.X + V.Y * V.Y);

return AZIMUTH (ARCTAN (V.Z / R));

end PHI;

............................ MAKE CARTESIANVECTOR_3

function MAKE CARTESIAN VECTOR 3

(X, Y, Z : FLOAT) return VECTOR_3 is

V : VECTOR_3;

begin

V.X X;

V.Y Y;

V.Z Z;

return V;

end MAKECARTESIANVECTOR3;

................................. X COORDINATE

function X COORDINATE

(V : VECTOR_3) return FLOAT is

begin

return V.X;

end XCOORDINATE;

................................ Y COORDINATE

function Y COORDINATE

V : VECTOR_3) return FLOAT is

begin

return V.Y;

end YCOORDINATE;

199

.... Z_COORDINATE

function ZCOORDINATE

(V :VECTOR_3) return FLOAT is

begin

return V.Z;

end ZCOORDINATE;

function "+"I

(V1, V2 :VECTOR_3) return VECTOR 3 is

V :VECTOR_3;

begin

.X Vi.X + V2.X;

V.Y Vl.Y + V2.Y;

V.Z Vl.Z + V2.Z;

return V;

end M+-";

function "1

V1, V2 :VECTOR_3)return VECTOR-3 is

V :VECTOR_3;

begin

V.X Vi.X - V2.X;

V.Y Vi.Y - V2.Y;

V.Z Vi.Z - V2.Z;

return V;

end ""

200

................................ DOT PRODUCT

function DOTPRODUCT

(VI, V2 : VECTOR_3) return FLOAT is

begin

return Vl.X * V2.X + VI.Y * V2.Y + Vl.Z * V2.Z;

end DOTPRODUCT;

................................ CROSS_ PRODUCT

function CROSS PRODUCT

(VI, V2 : VECTOR_3) return VECTOR 3 is

V : VECTOR_3;

begin

V.X VI.Y * V2.Z - V1.Z * V2.Y;

V.Y Vl.Z * V2.X - Vi.X * V2.Z;

V.Z Vl.X * V2.Y - VI.Y * V2.X;

return V;

end CROSSPRODUCT;

....................SCA LE

function SCALE

(V : VECTOR 3;

SCALEFACTOR : FLOAT) return VECTOR 3 is

V3 : VECTOR 3;

begin

-- length (result) = length (v) * scale factor

V3.X V.X * SCALEFACTOR;

V3.Y V.Y * SCALE FACTOR;

V3.Z V.Z * SCALEFACTOR;

return V3;

end SCALE;

201

................................. NORMALIZE

function NORMALIZE

(V : VECTOR_3) return VECTOR 3 is

R : FLOAT;

PHI : AZIMUTH;

THETA : ANGLE;

V3 : VECTOR_3;

begin

-- length (result) = 1.0

THETA := ARCTAN (V.Y / V.X);

R := SQRT (V.X * V.X + V.Y V.Y);

PHI AZIMUTH (ARCTAN (V.Z / R));

V3.Z SIN (ANGLE (PHI));

R := COS (ANGLE (PHI));

V3.Y R * SIN (THETA);

V3.X R * COS (THETA);

return V3;

end NORMALIZE;

end VECTOR_3_PKG;

202

APPENDIX I

SPEED PACKAGE

-- Authors Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

-- Description : Defines data type SPEED and associated functions

with MATH;

use MATH;

package SPEEDPKG is

subtype SPEED is FLOAT; -- Units : yards per second

-- Returns yards per second, given knots (nautical miles per hour

function MAKESPEED

KNOTS : FLOAT) return SPEED;

-- Returns knots, given yards per second

function SPEEDINKNOTS

(S : SPEED) return FLOAT;

pragma INLINE

(MAKESPEED, SPEEDINKNOTS);

end SPEEDPKG;

203

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

package body SPEED PKG is

YDSINKNOT : constant FLOAT r080.2 / 3.0;

SECONDSINHOUR : constant FLOAT := 3600.0;

............................... MAKE SPEED

function MAKE SPEED

(KNOTS FLOAT) return SPEED is

begin

return (KNOTS * YDS INKNOT) , SECONDSINHOUR;

end MAKESPEED;

............................. SPEED _INKNOTS

function SPEED IN KNOTS

(S : SPEED) return FLOAT is

begin

return (S * SECONDSINHOUFR YLS IN KNCT;

end SPEEDINKNOTS;

. .

end SPEEDPKG;

204

APPENDIX J

ANGLE PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

-- Description : Defines data suttypes ANGLE, AZIMUTH, and associated

-- functions

with MATH;

use MATH;

package ANGLE PKG is

subtype ANGLE is

FLOAT ranoe -2.0 * PI .. 2.0 F:; -- Units of radians

subtype AZIMUTH is

ANGLE range -1.0 * PI .. PI; -- Units of radians

function DEGREES TO RADIANS (X FLOAT) return ANGLE;

-- Converts compass degree value tc its equivalent radian valu e,

function RADIANS TO DEGREES (A ANGLE) return FLOAT;

-- Converts radian value to its equivalent compass degree value

function SIN (A ANGLE) return FLOAT renames MATH.SIN;

function COS (A ANGLE) return FLOAT renames MATH.COS;

205

function ARCTAN (A ANGLE) return FLOAT renames MATH.ARCTAN;

function ARCSIN (A ANGLE) return FLOAT renames MATH.ARCSIN;

pragma INLINE (DEGREESTORADIANS, RADIANSTODEGREES, SIN, COS,
ARCTAN,

ARCSIN);

end ANGLEPKG;

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

package body ANGLEPKG is

CONVERSIONFACTOR : constant FLOAT 180.0 / PI;

............................. DEGREES TO RADIANS

function DEGREESTORADIANS (X : FLOAT) return ANGLE is

begin

return ANGLE (X / CONVERSIONFACTOR);

end DEGREESTORADIANS;

............................. RADIANS_ TO_ DEGREES

function RADIANSTODEGREES (A : ANGLE) return FLOAT is

F : FLOAT;

begin

F := FLOAT (A) * CONVERSIONFACTOR; d

if F < 0.0 then

return 360.0 + F;

end if;

return F;

end
RADIANSTODEGREES; ..

end ANGLEPKG;

206

APPENDIX K

ABSOLUTE TIME PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

-- Description : Defines abstract data type ABSOLUTETIME and associated

-- functions

with RELATIVETIMEPKG;

use RELATIVETIMEPKG;

package ABSOLUTETIMEPKG is

type ABSOLUTETIME is private;

function NOW return ABSOLUTE TIME;

-- Converts CALENDAR.CLOCK time to ABSOLUTETIME

function MAKEABSOLUTETIME

(YEAR, MONTH, DAY : NATURAL;

TIMEOFDAY : RELATIVETIME) return ABSOLUTETIME;

-- Accepts numerical values of year, month, day, and the time of day

-- (represented in seconds). Converts inputted values to ABSOLUTE TIME

function YEAR

T : ABSOLUTETIME) return NATURAL;

207

-- Returns the value of the year contained in the ABSOLUTE-TIME input

function MONTH

T : ABSOLUTE TIME) return NATURAL;

Returns the value of the month contained in the ABSOLUTETIME input

function DAY

T : ABSOLUTE TIME) return NATURAL;

-- Returns the value of the day contained in the ABSOLUTE TIME input

function TIME OF DAY

T : ABSOLUTETIME) return RELATIVETIME;

-- Returns the value of the time of day (in seconds) contained in the

-- ABSOLUTETIME input

function "+"

(ABT : ABSOLUTE TIME;

RT : RELATIVE-TIME) return ABSOLUTE-TIME;

function "'+"

(RT RELATIVETIME;

ABT ABSOLUTETIME) return ABSOLUTETIME;

function 'I-"

(TI, T2 ABSOLUTE TIME) return RELATIVETIME;

function "<"

(TI, T2 ABSOLUTETIME) return BOOLEAN;

pragma INLINE

(MAKEABSOLUTETIME, YEAR, MONTH, DAY, TIMEOFDAY);

private

type ABSOLUTETIME is

record

ABSYEAR : NATURAL;

ABSMONTH : NATURAL;

ABSDAY : NATURAL;

ABSHOUR : NATURAL;

ABSMINUTE : NATURAL;

208

ABSSECONDS : FLOAT;

end record;

BEGINNING : constant ABSOLUTETIME NOW;

end ABSOLUTETIMEPKG;

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

with CALENDAR;

use CALENDAR;

package body ABSOLUTETIMEPKG is

.................................... NOW

function NOW return ABSOLUTE TIME is

ABT ABSOLUTETIME;

SEC DAYDURATION;

CT TIME;

begin

CT CLOCK; -- Get system time clock value now

SEC SECONDS (CT); -- Convert time to seconds

ABT.ABSYEAR NATURAL (YEAR (CT));

ABT.ABSMONTH NATURAL (MONTH (CT));

ABT.ABSDAY NATURAL (DAY (CT));

ABT.ABSHOUR NATURAL (FLOAT (SEC)) I 3600;

ABT.ABSMINUTE NATURAL (FLOAT (SEC) -

209

FLOAT (ABT.ABSHOUR * 3600)) / 60;

ABT.ABSSECONDS FLOAT (SEC) - FLOAT ((ABT.ABSHOUR * 3600) +

(ABT.ABS MINUTE * 60));

return ABT;

end NOW;

............................. MAKEABSOLUTE TIME

function MAKE ABSOLUTETIME

(YEAR, MONTH, DAY : NATURAL;

TIMEOFDAY : RELATIVETIME) return ABSOLUTE TIME is

ABT : ABSOLUTETIME;

begin

ABT.ABSYEAR YEAR;

ABT.ABSMONTH MONTH;

ABT.ABSDAY DAY;

ABT.ABSHOUR NATURAL (TIMEOFDAY) / 3600;

ABT.ABSMINUTE := (NATURAL (TIMEOFDAY) -

ABT.ABSHOUR * 3600) / 60;

ABT.ABSSECONDS := FLOAT (TIMEOFDAY) -

FLOAT ((ABT.ABS HOUR * 3600) +

(ABT.ABSMINUTE * 60));

return ABT;

end MAKEABSOLUTETIME;

.................................... YEAR

function YEAR

T : ABSOLUTETIME) return NATURAL is

begin

return T.ABSYEAR;

end YEAR;

210

................................... M ONTH

function MONTH

(T : ABSOLUTETIME) return NATURAL is

begin

return T.ABSMONTH;

end MONTH;

.... DA Y

function DAY

(T : ABSOLUTETIME) return NATURAL is

begin

return T.ABSDAY;

end DAY;

............................... TIMEOFDAY

function TIME OF DAY

(T ABSOLUTE TIME) return RELATIVE TIME is

RT RELATIVETIME;

begin

RT := RELATIVE TIME (T.ABS HOUR * 3600 + T.ABSMINUTE * 60) +

RELATIVETIME (T.ABSSECONDS);

return RT;

end TIMEOFDAY;

, p ,. .o . . .

function "+"

(ABT : ABSOLUTE TIME;

RT : RELATIVETIME) return ABSOLUTETIME is

RABT ABSOLUTETIME;

RTM RELATIVE TIME;

211

TM TIME;

Y YEARNUMBER;

M MONTHNUMBER;

D DAY NUMBER;

S DAYDURATION;

begin

-- Use CALENDAR functions to get year, month, day of ABT

Y YEARNUMBER (ABT.ABSYEAR);

M MONTH NUMBER (ABT.ABSMONTH);

D DAYNUMBER (ABT.ABSDAY);

-- Convert hours, minutes, seconds of ABT to seconds (RELATIVE TIME

RTM := MAKERELATIVETIME (ABT.ABSHOUR,

ABT.ABSMINUTE,

ABT.ABSSECONDS);

-- Convert RELATIVE TIME type of RTM to DAY DURATION subtype,

-- then represent all values in terms of CALENDAR.TIME

S DAY DURATION (RTM);

TM TIMEOF (Y, M, D, S);

-- Use CALENDAR "+" function to add input objects

TM := CALENDAR."+" (TM, DURATION (RT));

-- Extract necessary values to fill ABSOLUTETIME returned variable

Y YEAR (TM);

M MONTH (TM);

D DAY (TM);

S SECONDS (TM);

-- Fill ABSOLUTE TIME returned variable

RABT.ABSYEAR NATURAL (Y);

RABT.ABSMONTH NATURAL (M);

RABT.ABSDAY NATURAL (D);

RABT.ABSHOUR HOURS (RELATIVETIME (S));

RABT.ABSMINUTE MINUTES (RELATIVETIME (S));

RABT.ABSSECONDS SECONDS (RELATIVE TIME (S));

return RABT;

212

end "+";

. i+ 11

function "+"

(RT RELATIVETIME;

ABT ABSOLUTETIME) return ABSOLUTETIME is

RABT ABSOLUTETIME;

RTM RELATIVETIME;

TM TIME;

Y YEARNUMBER;

M MONTHNUMBER;

D DAY NUMBER;

S DAYDURATION;

begin

-- Use CALENDAR functions to get year, month, day of ABT

Y YEAR NUMBER (ABT.ABSYEAR);

M MONTH NUMBER (ABT.ABSMONTH);

D DAY NUMBER (ABT.ABSDAY);

-- Convert hours, minutes, seconds of ABT to seconds (RELATIVE TIME

RTM := MAKERELATIVE-TIME (ABT.ABSHOUR,

ABT.ABSMINUTE,

ABT.ABSSECONDS);

-- Convert RELATIVETIME type of RTM to DAYDURATION subtype,

-- then represent all values in terms of CALENDAR.TIME

S DAY DURATION (RTM);

TM TIMEOF (Y, M, D, S);

-- Use CALENDAR "+" function to add input objects

TM := CALENDAR."+" (TM, DURATION (RT));

-- Extract necessary values to fill ABSOLUTE TIME returned variable

Y YEAR (TM);

M MONTH (TM);

D DAY (TM);

213

S := SECONDS (TM);

-- Fill ABSOLUTE TIME returned variable

RABT.ABS YEAR NATURAL (Y);

RABT.ABSMONTH NATURAL (M);

RABT.ABSDAY NATURAL (D);

RABT.ABSHOUR HOURS (RELATIVETIME (S));

RABT.ABSMINUTE MINUTES (RELATIVETIME (S));

RABT.ABSSECONDS SECONDS (RELATIVE TIME (S);

return RABT;

end "+";

function "-"

(T1, T2 : ABSOLUTETIME) return RELATIVETIME is

TMI,

TM2 : TIME;

DUR : DURATION;

Y1,

Y2 YEARNUMBER;

MI,

M2 MONTHNUMBER;

Dl,

D2 DAY_NUMBER;

S1,

S2 DAYDURATION;

RTI,

RT2 : RELATIVETIME;

begin

-- Use CALENDAR functions to get year, month, day of TI, T2

Yl YEARNUMBER (T1.ABSYEAR);

Y2 YEAR NUMBER (T2.ABS YEAR);

M1 MONTH NUMBER (T1.ABS MONTH);

M2 MONTH NUMBER (T2.ABS MONTH);

D1 DAY NUMBER (T1.ABS DAY);

214

D2 := DAYNUMBER (T2.ABSDAY);

-- Convert hours, minutes, seconds of TI, T2 to seconds (RELATIVE TIME

RTI MAKERELATIVETIME (T1.ABSHOUR,

T1.ABSMINUTE,

TI.ABS SECONDS);

RT2 MAKERELATIVETIME (T2.ABSHOUR,

T2.ABSMINUTE,

T2.ABSSECONDS);

-- Convert RELATIVETIME types of Ti, T2 to DAYDURATION subtype,

-- then represent all values in terms of CALENDAR.TIME

Si DAYDURATION (RTI);

S2 DAYDURATION (RT2);

TMi TIMEOF (YI, Ml, Di, Si);

TM2 TIMEOF (Y2, M2, D2, S2);

-- Use CALENDAR "-" function to subtract T2 equivalent from Ti
equivalent

DUR := CALENDAR."-" (TM1, TM2);

return RELATIVETIME DUR);

end "-";

function "<"

(TI, T2 : ABSOLUTETIME) return BOOLEAN is

TMl,

TM2 TIME;

DUR DURATION;

YI,

Y2 YEARNUMBER;

Mi,

M2 MONTHNUMBER;

Di,

D2 DAYNUMBER;

Si,

S2 DAY DURATION;

215

RT1,

RT2 : RELATIVETIME;

begin

-- Use CALENDAR functions to get year, month, day of TI, T2

Y1 YEARNUMBER (Tl.ABSYEAR);

Y2 YEARNUMBER (T2.ABSYEAR);

M1 MONTHNUMBER (Tl.ABSMONTH);

M2 MONTHNUMBER (T2.ABSMONTH);

Dl DAYNUMBER (TI.ABSDAY);

D2 DAYNUMBER (T2.ABSDAY);

-- Convert hours, minutes, seconds of TI, T2 to seconds (RELATIVE TIME

RTI: MAKERELATIVETIME (TI.ABSHOUR,

TI.ABSMINUTE,

Tl.ABS SECONDS);

RT2 MAKERELATIVETIME (T2.ABSHOUR,

T2.ABSMINUTE,

T2.ABSSECONDS);

-- Ccnvert RELATIVETIME types of TI, T2 to DAYDURATION subtype,

-- then represent all values in terms of CALENDAR.TIME

S1 DAYDURATION (RTI);

S2 DAYDURATION (RT2);

TMI TIMEOF (YI, MI, DI, Si);

TM2 TIMEOF (Y2, M2, D2, S2);

-- Use CALENDAR "<" function to compare T2 equivalent to T1 equivalent

return CALENDAR."<" (TMi, TM2);

end "<";

. .

end ABSOLUTETIMEPKG;

216

APPENDIX L

DISTANCE PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

-- Description : Defines data subtype DISTANCE and associated functions

package DISTANCEPKG is

subtype DISTANCE is FLOAT; -- Units : yards

-- Larger than any observable range.

UNLIMITED : constant DISTANCE FLOAT'LAST;

-- Unknown altitude.

UNKNOWN : constant DISTANCE - UNLIMITED;

-- Converts nautical miles to yards

function MAKENAUTICALMILESDISTANCE

NM : FLOAT) return DISTANCE;

-- Converts yards to nautical miles

function DISTANCEINNAUTICALMILES

(D : DISTANCE) return FLOAT;

pragma INLINE

MAKENAUTICALMILESDISTANCE,

217

DISTANCEINNAUTICALMILES);

end DISTANCEPKG;

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

package body DISTANCEPKG is

YDSINNAUTICALMILE : constant FLOA = 6080.2 / 3.0;

........................... MAKENAUTICAL MILESDISTANCE

function MAKENAUTICALMILESDISTANCE

(NM : FLOAT) return DISTANCE is

begin

return NM * YDSINNAUTICALMILE;

end MAKENAUTICALMILESDISTANCE;

........................... DISTANCE -IN NAUTICALMILES

function DISTANCE IN NAUTICALMILES

(D : DISTANCE) return FLOAT is

begin

return D / YDS IN NAUTICALMILE;

end DISTANCEINNAUTICALMILES;

. .

end DISTANCEPKG;

218

APPENDIX M

GLOBAL OBSERVATION PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

-- Description : Defines data type GLOBALOBSERVATION

with GLOBALPOSITIONPKG, VELOCITYPKG, ABSOLUTETIMEPKG;

use GLOBALPOSITIONPKG, VELOCITYPKG, ABSOLUTETIMEPKG;

package GLOBALOBSERVATIONPKG is

type GLOBALOBSERVATION is

record

POSITION : GLOBALPOSITION;

COURSEANDSPEED VELOCITY;

OBSERVATIONTIME ABSOLUTE TIME;

end record;

end GLOBALOBSERVATIONPKG;

219

APPENDIX N

GLOBAL POSITION PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

-- Description : Defines abstract data type GLOBALPOSITION and
associated

-- functions/procedures

with RELATIVEPOSITIONPKG, ANGLEPKG, DISTANCEPKG;

use RELATIVEPOSITIONPKG, ANGLEPKG, DISTANCEPKG;

package GLOBALPOSITIONPKG is

type GLOBALPOSITION is private; -- Earth coordinates.

type NORTHSOUTH is (N, S);-- Specifies latitude hemispere

type EASTWEST is (E, W);-- Specifies longitude hemisphere

-- Converts lat/long degrees, minutes, seconds to GLOBAL POSITION

function MAKEGLOBALPOSITION

(LATITUDEDIRECTION : NORTHSOUTH;

LATITUDEDEGREES NATURAL;

LATITUDEMINUTES NATURAL;

LATITUDESECONDS NATURAL;

LONGITUDEDIRECTION : EASTWEST;

LONGITUDEDEGREES : NATURAL;

220

LONGITUDE MINUTES NATURAL;

LONGITUDESECONDS NATURAL) return GLOBALPOSITION;

-- Finds bearing & range (RELATIVEPOSITION) from 1 earth coordinate
to

-- another

function FINDRELATIVEPOSITION

(CONTACT,

REFERENCE POINT : GLOBALPOSITION) return RELATIVEPOSITION;

-- Returns an earth coordinate, given 1 earth coordinate and a bearing &

range

-- (RELATIVE POSITION

function FIND GLOBALPOSITION

(OFFSET : RELATIVEPOSITION;

REFERENCEPOINT : GLOBALPOSITION) return GLOBALPOSITION;

-- Returns length of the great circle path from pl to p
2

function GREATCIRCLEDISTANCE

(P1,

P2 : GLOBALPOSITION) return DISTANCE;

-- Returns true bearing at position pl of the great circle path from pl

to p2

function GREATCIRCLEBEARING

(P1,

P2 : GLOBALPOSITION) return ANGLE;

-- Returns latitude (in familiar terms, degrees, minutes, seconds) of
a

-- given GLOBALPOSITION

procedure GETLATITUDE

(POSITION in GLOBAL POSITION;

DIRECTION out NORTHSOUTH;

DEGREES : out NATURAL;

MINUTES : out NATURAL;

SECONDS : out NATURAL);

-- Returns longitude (in familiar terms, degrees, minutes, seconds) of
a

-- given GLOBAL POSITION

procedure GETLONGITUDE

221

POSITION : in GLOBALPOSITION;

DIRECTION : out EASTWEST;

DEGREES out NATURAL;

MINUTES out NATURAL;

SECONDS out NATURAL);

pragma INLINE (MAKEGLOBALPOSITION, FINDRELATIVEPOSITION,

FINDGLOBALPOSITION, GREATCIRCLEDISTANCE,

GREATCIRCLEBEARING, GETLATITUDE, GET-LONGITUDE);

private

type GLOBALPOSITION is

record

THETA : ANGLE; -- Longitude angle in radians, -2pi to 2pi

-- 0.0 = Greenwich Meridian

-- 0.0 to 2pi = East longitude

PHI : AZIMUTH; -- Latitude angle in radians, -pi to pi

-- 0.0 = equator

-- 0.0 to pi = North latitude

end record;

end GLOBALPOSITIONPKG;

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

with MATH, VECTOR_2_PKG;

use VECTOR_2_PKG;

package body GLOBALPOSITION PKG is

222

............................. MAKEGLOBALPOSITION

function MAKEGLOBALPOSITION

(LATITUDEDIRECTION : NORTHSOUTH;

LATITUDE DEGREES NATURAL;

LATITUDEMINUTES NATURAL;

LATITUDESECONDS NATURAL;

LONGITUDEDIRECTION : EASTWEST;

LONGITUDEDEGREES : NATURAL;

LONGITUDEMINUTES : NATURAL;

LONGITUDESECONDS : NATURAL) return GLOBALPOSITION is

LATDEG,

LONG DEG : FLOAT;

GP GLOBALPOSITION;

begin

-- Convert latitude, longitude to seconds

LATDEG := FLOAT (LATITUDEDEGREES * 3600 + LATITUDEMINUTES * 60 +

LATITUDESECONDS);

LONGDEG := FLOAT (LONGITUDEDEGREES * 3600 + LONGITUDEMINUTES * 60 +

LONGITUDESECONDS);

-- Convert longitude seconds to radians (0..PI = east, -PI..0 = west)

GP.THETA := ANGLE (LONGDEG / 3600.0 * MATH.PI / 180.0);

if LONGITUDEDIRECTION = W then

GP.THETA := -GP.THETA;

end if;

-- Convert latitude seconds to radians (0..PI/2 = north, -PI/2..0 =

south)

GP.PHI := AZIMUTH (LATDEG / 3600.0 * MATH.PI / 180.0);

if LATITUDEDIRECTION = S then

GP.PHI := -GP.PHI;

end if;

return GP;

223

end MAKEGLOBALPOSITION;

.............................. FINDRELATIVEPOSITION

function FIND RELATIVEPOSITION

(CONTACT,

REFERENCEPOINT GLOBALPOSITION) return RELATIVEPOSITION is

DELTALATINNM,

DELTALONGINNM FLOAT; -- In nautical miles

DELTALATINRADIANS AZIMUTH; -- In radians

DELTALONGINRADIANS ANGLE; -- In radians

CTCRELPOS : RELATIVEPOSITION;

begin

-- Compute change in latitude (radians

DELTALATINRADIANS := CONTACT.PHI - REFERENCEPOINT.PHI;

-- If E / W hemisphere change over International Date Line

if (CONTACT.THETA * REFERENCE POINT.THETA < 0.0) and

ABS (CONTACT.THETA - REFERENCEPOINT.THETA)) > MATH.PI then

-- If going East to West

if REFERENCE POINT.THETA > 0.0 then

DELTALONGINRADIANS := MATH.PI * 2.0 - (REFERENCEPOINT.THETA -

CONTACT.THETA);

-- If going West to East

else

DELTALONGINRADIANS - MATH.PI 4 2.0 - (REFERENCEPOINT.THETA -

CONTACT.THETA);

end if;

-- No change in E / W hemispheres

else

DELTALONGINRADIANS := CONTACT.THETA - REFERENCEPOINT.THETA;

end if;

-- Convert lat/long change to nautical miles

-- 1 degree (in radians) of change = 60 miles

DELTALAT IN NM := DELTALAT IN RADIANS * 180.0 / MATH.PI * 60.0;

224

DELTALONGINNM := DELTALONGINRADIANS * 180.0 / MATH.PI * 60.0;

-- Convert the changes in lat/long to DISTANCE (yards

-- then initialize the RELATIVEPOSITION (2-D vector)

CTCRELPOS MAKECARTESIANVECTOR_2

FLOAT (MAKENAUTICALMILESDISTANCE

(DELTALONGINNM)),

FLOAT (MAKENAUTICALMILESDISTANCE

(DELTA LAT IN NM)));

return CTCRELPOS;

end FINDRELATIVEPOSITION;

............................. FINDGLOBALPOSITION

function FIND GLOBALPOSITION

(OFFSET : RELATIVEPOSITION;

REFERENCE POINT GLOBALPOSITION) return GLOBALPOSITION is

DELTALATINNM,

DELTALO-GINNM FLOAT; -- in nautical miles

DELTALATINRADIANS AZIMUTH; -- in radians

DELTALONGINRADIANS ANGLE; -- in radians

CTCPOSITION : GLOBALPOSITION;

begin

-- Get changes in lat/long & convert to nautical miles

DELTALAT IN NM := DISTANCEINNAUTICALMILES (YCOORDINATE (OFFSET

DELTA LONGINNM := DISTANCEINNAUTICALMILES (XCOORDINATE (OFFSET
));

-- Convert NM to radians

DELTA LATINRADIANS := AZIMUTH (DEGREES TO RADIANS

DELTALATINNM / 60.0));

DELTALONGINRADIANS := DEGREESTORADIANS (DELTALONGINNM / 60.0

-- If the target lies on the other side of the pole, don't

-- make the resultant latitude > 90 degrees

225

if ABS (REFERENCEPOINT.PHI + DELTALATINRADIANS) > MATH.PI / 2.0
then

-- If going over the south pole

if DELTALATINRADIANS < 0.0 then

CTCPOSITION.PHI := - MATH.PI - (REFERENCEPOINT.PHI +

DELTALATINRADIANS);

-- Going over the north pole

else

CTCPOSITION.PHI := MATH.PI - (REFERENCEPOINT.PHI +

DELTALATINRADIANS);

end if;

-- If we cross the n/s pole, we also change e/w hemispheres

DELTALONGINRADIANS := DELTALONGINRADIANS + MATH.PI;

-- Not going over the n/s pole

else

-- Assign target's latitude (in radians

CTCPOSITION.PHI := REFERENCEPOINT.PHI + DELTALATINRADIANS;

end if;

-- If target lies in other e/w hemisphere

if ABS (REFERENCEPOINT.THETA + DELTALONGINRADIANS) > MATH.PI then

-- Target is in western hemisphere

if DELTA LONG IN RADIANS < 0.0 then

DELTALONGINRADIANS := DELTALONGINRADIANS + MATH.PI * 2.0;

-- Target is in eastern hemisphere

else

DELTA LONGINRADIANS := DELTALONG IN RADIANS - MATH.PI * 2.0;

end if;

end if;

-- Assign target's longitude

CTCPOSITION.THETA := REFERENCEPOINT.THETA + DELTALONGINRADIANS;

return CTCPOSITION;

226

end FINDGLOBALPOSITION;

.............................. GREATCIRCLEDISTANCE

function GREATCIRCLEDISTANCE

(PI,

P2 : GLOBALPOSITION) return DISTANCE is

CTCRGBRG : RELATIVEPOSITION;

begin

-- Find where P2 is in relation to P1 (bearing & range

CTCRGBRG := FINDRELATIVEPOSITION (P1, P2);

-- Return only the range (great circle

return RANGEOF (CTCRGBRG);

end GREATCIRCLEDISTANCE;

......... GREATCIRCLE BEARIN

function GREAT CIRCLEBEARING

P1, -- From

P2 -- To

GLOBALPOSITION) return ANGLE is

CTCRGBRG : RELATIVEPOSITION;

begin

-- Find where P2 is in relation to P1 (bearing & range

CTCRGBRG := FINDRELATIVEPOSITION (P1, P2);

-- Return only the bearing (great circle

return BEARINGTO (CTCRGBRG);

end GREATCIRCLEBEARING;

227

............................... GET_ LATITUDE

procedure GETLATITUDE

(POSITION in GLOBALPOSITION;

DIRECTION out NORTHSOUTH;

DEGREES : out NATURAL;

MINUTES : out NATURAL;

SECONDS : out NATURAL) is

PH AZIMUTH := POSITION.PHI;

DEG NATURAL;

MIN NATURAL;

SEC NATURAL;

begin

-- If the value of target's PHI < 0.0, it's in the southern hemisphere

if PH < 0.0 then

DIRECTION S;

PH := -PH;

else

DIRECTION N;

end if;

-- Convert latitude (radians) to seconds

SEC := NATURAL (FLOAT (PH) * 180.0 / MATH.PI * 3600.0);

-- Calculate degrees, minutes, seconds

DEG SEC / 3600;

MIN (SEC - DEG * 3600) / 60;

SEC SEC - DEG * 3600 - MIN * 60;

DEGREES DEG;

MINUTES MIN;

SECONDS SEC;

end GETLATITUDE;

................................. GET_ LONGITUDE

procedure GETLONGITUDE

POSITION : in GLOBAL POSITION;

228

DIRECTION : out EASTWEST;

DEGREES out NATURAL;

MINUTES out NATURAL;

SECONDS out NATURAL) is

TH ANGLE := POSITION.THETA;

DEG NATURAL;

MIN NATURAL;

SEC NATURAL;

begin

-- If the value of target's THETA < 0.0, it's in the western hemisphere

if TH < 0.0 then

DIRECTION W;

TH := -TH;

else

DIRECTION E;

end if;

-- Convert longitude (radians) to seconds

SEC := NATURAL (FLOAT (TH) * 180.0 / MATH.PI * 3600.0);

-- Calculate degrees, minutes, seconds

DEG SEC / 3600;

MIN (SEC - DEG * 3600) / 60;

SEC SEC - DEG * 3600 - MIN * 60;

DEGREES DEG;

MINUTES MIN;

SECONDS SEC;

end GETLONGITUDE;

. °.. o o. o. °

end GLOBALPOSITIONPKG;

229

APPENDIX 0

RELATIVE OBSERVATION PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

. ..

-- Description : Defines data type RELATIVEOBSERVATION

with RELATIVEPOSITIONPKG, CALENDAR;

use RELATIVEPOSITIONPKG, CALENDAR;

package RELATIVEOBSERVATIONPKG is

type RELATIVEOBSERVATION is

record

POSITION : RELATIVEPOSITION;

OBSERVATIONTIME : TIME;

end record;

end RELATIVEOBSERVATLONPKG;

230

APPENDIX P

RELATIVE POSITION PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

. o . o ° .. °. o.

-- Description : Defines data type RELATIVE POSITION and associated
functions

with VECTOR_2_PKG, DISTANCEPKG, ANGLEPKG;

use VECTOR_2_PKG, DISTANCEPKG, ANGLEPKG;

package RELATIVEPOSITIuNPKG is

subtype RELATIVEPOSITION is VECTOR_2; -- Two dimensional position
vector.

-- Returns the distance portion of a 2-D RELATIVEPOSITION vector

function RANGEOF

CONTACT : RELATIVEPOSITION) return DISTANCE

renames VECTOR_2_PKG.LENGTH;

-- Returns the bearing portion of a 2-D RELATIVE POSITION vector

function BEARINGTO

CONTACT : RELATIVEPOSITION) return ANGLE

renames VECTOR_2_PKG.DIRECTION;

pragma INLINE (RANGEOF, BEARING-TO);

end RELATIVEPOSITIONPKG;

231

APPENDIX Q

TRACK DATABASE PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

-- Description : Defines abstract data type TRACKDATABASE and
associated

-- functions and procedures

with TRACKPKG;

use TRACKPKG;

package TRACKDATABASEPKG is

type TRACKDATABASE is private;

-- Determines whether or not a TRACK is active

function ACTIVETRACK

DBASE : TRACKDATABASE) return BOOLEAN;

-- Restores active TRACK to database before new one is activated

procedure RESTOREALTEREDTRACKTODATABASE

(TRAK in TRACK;

DBASE in out TRACKDATABASE);

-- Finds a TRACK in the database by track number

procedure FINDTRACKINDBASE

TRAKNUM : in NATURAL;

232

TRAK : in out TRACK;

DBASE : in out TRACKDATABASE);

-- Adds a new TRACK to the database

procedure ADD TRACK TO DBASE

(TRAK in TRACK;

DBASE in out TRACKDATABASE);

-- TRACKS object & all associated observations of that TRACK

-- are purged. Only the currently active TRACK can be deleted.

procedure DROP TRACK FROM DBASE

DBASE : in out TRACKDATABASE);

-- Drops all TRACKS froa. Ahe database and sends them to history

-- Should be automatically invoked upon termination of main program

procedure PURGE ENTIRE DBASE

(DBASE : in out TRACKDATABASE);

pragma INLINE (ACTIVE TRACK, RESTOREALTEREDTRACKTODATABASE,

FINDTRACKINDBASE, ADD TRACKTODBASE,

DROPTRACKFROMDBASE, PURGEENTIREDBASE);

private

type TRACKNODE;-- Elements of the TRACKDATABASE

type TRACK PTR is access TRACK NODE;

type TRACKNODE is

record

TRAK : TRACK;

NEXTTRACK : TRACKPTR;

end record;

type TRACKDATABASE is

record

OWNSHIPPOSITION : TRACK PTR; -- Points to OWNSHIP TRACK

CURRENTTRACKPOSITION : TRACKPTR; -- Points to currently active TRACK

PRIORTRACKPOSITION : TRACK PTR; -- Points to TRACK before active

-- TRACK for relink purposes after

-- active TRACK is deleted

233

end record;

end TRACKDATABASEPKG;

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

with UNCHECKEDDEALLOCATION;

package body TRACKDATABASE PKG is

procedure FREETRK is

new UNCHECKEDDEALLOCATION (TRACKNODE, TRACK_PTR);

................................. ACTIVE_ TRA CK

function ACTIVE TRACK

(DBASE : TRACK DATABASE) return BOOLEAN is

begin

if DBASE.CURRENTTRACKPOSITION = null then

return FALSE;

end if;

return TRUE;

end ACTIVETRACK;

........................ RESTOREALTERED TRACKTODATABASE

procedure RESTORE ALTERED TRACK TO DATABASE

(TRAK in TRACK; -- altered TRACK

DBASE in out TRACKDATABASE) is

234

begin

-- If currently active TRACK was not deleted

4f ACTIVETRACK (DBASE) then

-- Restore currently active TRACK

DBASE.CURRENTTRACKPOSITION.TRAK := TRAK;

-- Restore OWNSHIP TRACK, if necessary

if DBASE.CURRENT TRACK POSITION = DBASE.OWNSHIPPOSITION then

DBASE.OWNSHIPPOSITION.TRAK := TRAK;

end if;

end if;

end RESTOREALTEREDTRACKTODATABASE;

.............................. FIND_ TRACK_ INDBASE

procedure FINDTRACKINDBASE

(TRAK NUM : in NATURAL;

TRAK in out TRACK;

DBASE in out TRACKDATABASE) is

begin

-- Restore currently active TRACK before reassigning current pointer

RESTOREALTEREDTRACKTODATABASE (TRAK, DBASE);

if TRAKNUM /= 0 then-- not OWNSHIP

DBASE.CURRENTTRACKPOSITION := DBASE.OWNSHIPPOSITION.NEXTTRACK;

DBASE.PRIORTRACKPOSITION := DBASE.OWNSHIPPOSITION;

while (DBASE.CURRENT TRACK POSITION /= null) and then

TRACK ID NUMBER (DBASE.CURRENTTRACKPOSITION.TRAK) >

TRAKNUM) loop

DBASE.PRIORTRACKPOSITION := DBASE.CURRENTTRACKPOSITION;

DBASE.CURRENT TRACK POSITION :=
DBASE.CURRENTTPACKPOSITION.NEXT_TRACK;

235

end loop;

else

DBASE.CURRENTTRACKPOSITION := DBASE.OWNSHIPPOSITION;

DBASE.PRIORTRACKPOSITION := null;

end if;

-- If TRACK found, return it

if (DBASE.CURRENTTRACKPOSITION /= null) and then

TRACKIDNUMBER (DBASE.CURRENTTRACKPOSITION.TRAK) = TRAKNUM
then

TRAK DBASE.CURRENTTRACKPOSITION.TRAK;

else -- TRACK not found

DBASE.CURRENTTRACKPOSITION := null;

end if;

end FINDTRACKINDBASE;

.............................. ADD TRACKTODBASE

procedure ADDTRACKTODBASE

(TRAK in TRACK;

DBASE in out TRACKDATABASE) is

T_P : TRACKPTR;

begin

TP := new TRACKNODE;

TP.TRAK := TRAK;

if DBASE.OWNSHIPPOSITION = null then

-- first track entered (OWNSHIP
DBASE.OWNSHIPPOSITION T_P;

DBASE.PRIORTRACKPOSITION := T P;

else

236

-- All new TRACKs are entered in the TRACKDATABASE linked list

-- immediately following OWNSHIP

T_P.NEXTTRACK := DBASE.OWNSHIPPOSITION.NEXTTRACK;

DBASE.OWNSHIPPOSITION.NEXTTRACK := TP;

DBASE.PRIORTRACKPOSITION := DBASE.OWNSHIPPOSITION;

end if;

DBASE.CURRENTTRACKPOSITION := T P;

end ADDTRACKTODBASE;

........................... DROPTRACKFROMDBASE

procedure DROPTRACKFROMDBASE

(DBASE : in out TRACKDATABASE) is

TR : TRACK := DBASE.CURRENT TRACKPOSITION.TRAK;

begin

-- OWNSHIP cannot be dropped

if DBASE.CURRENTTRACKPOSITION /= DBASE.OWNSHIPPOSITION then

-- Send TRACK data & all its observations to archive file

DELETETRACKANDSENDTOHISTORY (TR);

DBASE.PRIORTRACKPOSITION.NEXTTRACK

DBASE.CURRENTTRACKPOSITION.NEXTTRACK;

-- Free deleted TRACK's memory space

FREETRK (DBASE.CURRENTTRACKPOSITION);

end if;

end DROPTRACKFROMDBASE;

.............................. PURGE_ ENTIRE_ DBASE

procedure PURGE ENTIRE DBASE

DBASE : in out TRACK DATABASE) is

237

OP : TRACKPTR := DBASE.OWNSHIPPOSITION;

CP, PP : TRACKPTR;

TRAK : TRACK := OP.TRAK;

begin

-- Send OWNSHIP data & all its observations to archive file

DELETETRACKANDSENDTOHISTORY (TRAK);

-- Get next TRACK in database

CP := OP.NEXTTRACK;

-- Delete TRACKs, send data to archives, and free up memory for all

-- TRACKs in the database

while CP /= null loop

TRAK := CP.TRAK;

DELETETRACKANDSENDTOHISTORY (TRAK);

PP := CP.NEXTTRACK;

FREETRK (CP);

CP := PP;

end loop;

FREETRK (OP);

DBASE.OWNSHIPPOSITION := null;

DBASE.CURRENTTRACKPOSITION := null;

DBASE.PRIORTRACKPOSITION := null;

end PURGEENTIREDBASE;

o. ° o °oo . o . o . o o. . .o o o° ° o . ° ° ° ° ° o. o °. o o

end TRACKDATABASEPKG;

238

APPENDIX R

LINK PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

. ,.. °. °. .. °. ..

-- Description : Defines abstract data type LINKTYPE and associated

-- functions and procedures

with TRACKPKG, GLOBALPOSITION_PKG, INTEGRATIONSYSTEMPKG,

RELATIVE_TIMEPKG, MSERIESMSGPKG;

use TRACKPKG, GLOBALPOSITIONPKG, INTEGRATIONSYSTEMPKG,

RELATIVETIMEPKG, MSERIESMSGPKG;

package LINKPKG is

TIMEOUTDURATION : constant RELATIVE TIME := 3600.0; -- < - +

-- LINKTRACK times out after 1 hour of no updates I

-- Actual value may differ once implemented ---------------------- +

type LINK TYPE is private;

type LINK TABLE;

type LINKPTR is access LINK-TABLE;

type LINK-TABLE is

record

LINK NUM : NATURAL; -- link assigned

239

TRKNUM : NATURAL := 0; -- system assigned

CTL : CONTROLTYPE; -- LINK, LOCAL

NEXTLT : LINKPTR;

end record;

-- Extracts & formats a link M series message to a LINKTYPE that

-- is later transformed into a TRACK

function CONVERT M SERIESMSGTOLINKTYPE

MSG : M_SERIESMSG) return LINKTYPE;

-- Creates a TRACK under LINK control from a LINKTYPE
procedure CREATE LINKTRACK

(LT in LINKTYPE;

LTBL in out LINKPTR;

TRK : in out TRACK);

-- Adds a new observation to an existing LINK TRACK

procedure ADD LINK OBSERVATION

(LT in LINKTYPE;

TRK in out TRACK);

-- All tracks reported over link are relative to DLRP

-- (Data Link Reference Point

procedure MAKE DLRPTRACK

(DLRP : in GLOBALPOSITION;

TRK : in out TRACK);

procedure FIND LINK TYPE IN TABLE BY LINKNUM

(LN : in NATURAL;-- link table number

LP in LINKPTR;

LT out LINKTYPE);

procedure FIND LINK TYPE IN TABLEBYTRKNUM

TN : in NATURAL;-- system assigned track number

LP in LINKPTR;

LT out LINKTYPE);

-- Updates LINKTABLE to reflect LOCAL control so no more link

-- updates to that track will occur

procedure CHANGE LINK TRACKTOLOCALTRACK

TN : in NATURAL);

240

-- Visits each node in LINK TABLE

-- Calls TIMEOUT to see if outside acceptable update time

-- If no update within specified period, assume link has dropped it &

-- call DROPLINKTRACKAFTERTIMEOUT

procedure SCAN LINK TABLE FORTIMEOUTS

LP : in out LINKPTR);

-- Deletes LINK TABLE entry after timeout

-- Makes call to INTEGRATIONSYSTEM to drop TRACK, if not under LOCAL
control

procedure DROP LINK TRACKAFTERTIMEOUT

(LP : in out LINK PTR;

TRKNUM : out NATURAL);

-- Checks LINK TABLE to see if LINKTYPE is under LOCAL control

function ASSIGNEDLOCALCONTROL

(LT : LINKTYPE;

LP : LINKPTR) return BOOLEAN;

-- Calls FIND LINK TYPE INTABLEBY LINK NUM

-- Flags system to drop link track after no updates in pre-assigned

time period

function TIME OUT

(LN : NATURAL) return BOOLEAN;

pragma INLINE (CONVERTMSERIESMSGTOLINKTYPE, CREATELINKTRACK,

ADDLINKOBSERVATION, MAKEDLRPTRACK,

FINDLINKTYPEINTABLEBYLINKNUM,

FINDLINKTYPEINTABLEBYTRKNUM,

CHANGELINKTRACKTOLOCALTRACK,

SCANLINKTABLEFORTIME OUTS, DROPLINKTRACKAFTERTIMEOUT,

ASSIGNEDLOCALCONTROL, TIMEOUT);

private

type LINKTYPE is

record

LINKNUM : NATURAL;

REL_POSFMDLRP : RELATIVEPOSITION;

TIMEOFOBS : ABSOLUTETIME;

241

TRKCAT TRACK-CATEGORY;

TRKID IDENTITYTYPE;

ALTITUDE : DISTANCE 0.0;

end record;

end LINKPKG;

242

APPENDIX S

SYSTEM STATUS PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

°. ° o. o o. °. °. o ..

-- Description : Defines abstract data type SYSTEMSTATUS and associated

-- functions and procedures

package SYSTEMSTATUSPKG is

type STATUS is (UP, DOWN);

type SENSOR is (LINK, GPS, RADAR, PITSWORD, GYRO, FATHOMETER);

type SYSTEMSTATUS is private;

-- Retrieves status of a particular sensor

function GETSTATUS

(SYSSTATUS : SYSTEMSTATUS;

SENSER : SENSOR) return STATUS;

-- Sets the status of a particular sensor

procedure SET STATUS

(SYS-STATUS : out SYSTEMSTATUS;

SENSER in SENSOR;

UPDOWN in STATUS);

pragma INLINE (GETSTATUS, SETSTATUS);

243

private

type SYSTEMSTATUS is

record

LINKSTATUS STATUS := DOWN;

GPSSTATUS STATUS := DOWN;

RADARSTATUS : STATUS := DOWN;

PITSWORDSTATUS : STATUS := DOWN;

GYROSTATUS : STATUS := DOWN;

FATHOMETERSTATUS : STATUS := DOWN;

end record;

end SYSTEMSTATUSPKG;

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

package body SYSTEMSTATUSPKG is

................................ GET STATUS

function GETSTATUS
(SYSSTATUS : SYSTEMSTATUS;

SENSER : SENSOR) return STATUS is

begin

case SENSER is

when LINK =>

return SYSSTATUS.LINKSTATUS;

when GPS =>

return SYSSTATUS.GPSSTATUS;

when RADAR =>

return SYSSTATUS.RADARSTATUS;

when PITSWORD =>

244

return SYSSTATUS.PITSWORDSTATUS;

when GYRO =>

return SYSSTATUS.GYROSTATUS;

when FATHOMETER =>

return SYSSTATUS.FATHOMETERSTATUS;

end case;

end GETSTATUS;

................................ SETSTATUS

procedure SET STATUS

(SYSSTATUS out SYSTEMSTATUS;

SENSER in SENSOR;

UP DOWN in STATUS) is

begin

case SENSER is

when LINK =>

SYSSTATUS.LINKSTATUS UPDOWN;

when GPS =>

SYSSTATUS.GPSSTATUS UPDOWN;

when RADAR =>

SYSSTATUS.RADARSTATUS := UPDOWN;

when PITSWORD =>

SYSSTLTUS.PITSWORDSTATUS := UP-DOWN;

when GYRO =>

SYSSTATUS.GYROSTATUS := UPDOWN;

when FATHOMETER =>

SYSSTATUS.FATHOMETERSTATUS := UPDOWN;

end case;

end SETSTATUS;

. o. ..

end SYSTEMSTATUSPKG;

245

APPENDIX T

NAVIGATION PACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

. °. .. o. .

-- Description : Defines function GET GPS UPDATE

with GLOBALOBSERVATIONPKG, TEXTIO, GLOBALPOSITIONPKG,

ABSOLUTETIMEPKG, VECTOR_2_PKG;

use GLOBALOBSERVATIONPKG, TEXTIO, GLOBALPOSITIONPKG,

ABSOLUTETIMEPKG, VECTOR_2_PKG;

package NAVIGATIONPKG is

-- Returns current OWNSHIP's position from GPS

function GETGPSUPDATE return GLOBALOBSERVATION;

pragma INLINE (GETGPSUPDATE);

end NAVIGATIONPKG;

package body NAVIGATION PKG is

function GETGPSUPDATE return GLOBALOBSERVATICN is

CHAR : CHARACTER;

246

THEFILE FILETYPE;

INSTRING BOOLEAN := FALSE; -- Start character '[' found,

-- reading position data

LATDEG, -- Degrees of latitude

LONGDEG,-- Degrees of longitude

LATMIN, -- Minutes of latitude

LONGMIN,-- Minutes of longitude

LATSEC, -- Seconds of latitude

LONGSEC NATURAL;-- Seconds of longitude

LATMINFL,-- GPS output of latitude minutes

LONGMINFL : FLOAT;-- GPS output of longitude minutes

LATDIR NORTHSOUTH;-- North/South latitude

LONGDIR EASTWEST;-- East/West longitude

OWNOBS GLOBALOBSERVATION;-- Returned position after conversion

package NATURAL INOUT is new INTEGER 10 (NATURAL);

package FLOATINOUT is new FLOATIO (FLOAT);

package N S INOUT is new ENUMERATION_10 (NORTH SOUTH);

package E W INOUT is new ENUMERATION_10 (EAST WEST);

use NATURALINOUT, FLOATINOUT, NS INOUT, EWINOUT;

begin

-- Open RS-232 comm port connected to GPS

OPEN (THEFILE, INFILE, NAME => "/dev/ttya");

loop -- Until position data is fully read in

GET (THEFILE, CHAR); -- Read the next character from the GPS string

if NOT INSTRING then -- If start character not yet found

if CHAR '[then -- Start character found

IN STRING := TRUE;

end if;

else -- Start character has been found

-- Skip over next 29 characters, irrelevant data

for I in 1 .. 29 loop

GET (THEFILE, CHAR);

247

end loop;

-- Get data that pertains to OWNSHIP's GLOBAL-POSITION

GET (THEFILE, LATDEG, 2);

GET (THEFILE, CHAR);

GET (THEFILE, LATMINFL, 7);

GET (THEFILE, LATDIR);

GET (THEFILE, CHAR);

GET (THE FILE, LONGDEG, 3

GET (THEFILE, CHAR);

GET (THEFILE, LONGMINFL, 7);

GET (THEFILE, LONGDIR);

-- Close the comm port

CLOSE (THEFILE);

-- GPS does not send minutes and seconds, but rather sends minutes as

-- a floating pcint number. The 4 statements below convert that

-- floating point number to minutes and seconds as required to fill a

-- GLOBAL POSITION.

LAT MIN NATURAL (LAT MIN FL - 0.5);

LATSEC NATURAL ((LATMINFL - FLOAT (LATMIN)) *

60.0 - 0.5);

LONG MIN NATURAL (LONG MIN FL - 0.5);

LONGSEC NATURAL ((LONGMINFL - FLOAT (LONGMIN) *

60.0 - 0.5);

-- Fill the GLOBALOBSERVATION record with the above position,

-- current system time, and a course and speed of 0.0, 0.0.

-- Procedures to calculate actual ccurse and speed are foand

-- in TRACKPKG.

OWNOBS.POSITION := MAKEGLOBALPOSITION

LATDIR, LATDEG, LATMIN, LATSEC,

LONGDIR, LONGDEG, LONGMIN, LONGSEC);

OWN OBS.OBSERVATION TIME NOW;

OWNOBS.COURSE AND SPEED MAKECARTESIANVECTOR_2 (0.0, 0.0);

return OWNOBS;

end if;

248

end loop;

end GETGPSUPDATE;

end NAVIGATIONPKG;

249

APPENDIX U

M_SERIESMSGPACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

o .. °

-- Description : Defines abstract data types MSERIESMSG,
MSERIESMSGBUFFER

-- and their associated functions and procedures

package MSERIESMSGPKG is

type MSERIESMSG is private;

type MSERIESMSGBUFFER is private;

-- Reads in an individual MSERIESMSG from the LINK processor

procedure GETMSERIESMSGFROMLINK

MSG : out MSERIESMSG);

-- Loops until START TRANSMISSION signal is found on LINK.

-- Once START TRANSMISSION signal found,

-- calls GETMSERIESMSGFROMLINK until END TRANSMISSION

-- signal found.

-- Each MSERIESMSG retrieved is appended to MSERIESMSGBUFFER

procedure FILL M SERIES MSG BUFFER

MSGBUFF : out MSERIESMSGBUFFER);

250

-- other functions/procedures to retrieve MSERIESMSG,

--MSERIESMSGBUFFER record items to be completed in

-- follow-on thesis work

private

type MSERIESMSG is

record

0 - to be completed in follow-on thesis work

end record;

type MSERIESMSGBUFFER is

some data structure of MSERIESMSG types

end MSERIESMSGPKG;

251

APPENDIX V

PROCESSLINKTRACKPACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

. .

-- Description : Defines procedure PROCESSMSGBUFFER and task

-- PROCESSLINKTRACKS

with INTEGRATIONSYSTEMPKG, MSERIESMSGPKG, LINKPKG, TRACKPKG,

SYSTEMSTATUSPKG;

use INTEGRATIONSYSTEMPKG, MSERIESMSGPKG, LINKPKG, TRACKPKG,

SYSTEMSTATUSPKG;

package PROCESSLINKTRACKSPKG is

procedure PROCESSMSGBUFFER

(MSG-BUFF : in MSERIESMSGBUFFER

task PROCESSLINKTRACKS;

end PROCESSLINK_TRACKSPKG;

package body PROCESS LINK TRACKSPKG is

252

procedure PROCESSMSGBUFFER

(MSG-BUFF : in MSERIESMSGBUFFER) is

begin

-- Uses procedures/functions in LINK PKG, TRACKPKG to

-- break down MSG-BUFF into individual MSERIESMSGs and

-- convert them to link TRACKS, altering/adding them to the

-- TRACK DATABASE as necessary (using INTEGRATIONSYSTEM

entry calls

end PROCESSMSGBUFFER;

task body PROCESSLINKTRACKS is

MSGBUFF : M_SERIESMSGBUFFER;

SENSERSTATUS : STATUS;

begin

loop

-- Get synch signal from INTEGRATIONSYSTEMPKG.LINKCYCLE

LINKCYCLE.STARTLINKUPDATE;

-- See if there's anything to process

INTEGRATIONSYSTEM.GETSENSORSTATUS (LINK, SENSERSTATUS ;

if SENSERSTATUS = UP then

-- Get the msg buffer

FILLMSERIESMSGBUFFER (MSGBUFF);

-- Process the buffer into separate msgs and possibly LINK TRACKs

PROCESSMSG BUFFER (MSGBUFF);

end if;

end loop;

exception

253

when STATUSERROR I CONSTRAINTERROR =>

INTEGRATIONSYSTEM.SETSENSORSTATUS (LINK, DOWN);

end PROCESSLINKTRACKS;

end PROCESSLINKTRACKSPKG;

254

APPENDIX W

RELATIVETIMEPACKAGE

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

. °. °.

-- Description : Defines data type RELATIVETIME and associated
functions

package RELATIVETIMEPKG is

subtype RELATIVETIME is FLOAT; -- Units : seconds

--Returns total seconds, given hours, minutes, seconds

function MAKERELATIVETIME

(HOURS, MINUTES NATURAL;

SECONDS : FLOAT) return RELATIVETIME;

-- Returns whole hours of a day, given seconds of a day

function HOURS

T : RELATIVETIME) return NATURAL;

-- Returns whole minutes of an hour, given seconds of a day

function MINUTES

T : RELATIVETIME) return NATURAL;

-- Returns seconds of a minute, given seconds of a day

function SECONDS

255

T : RELATIVETIME) return FLOAT;

pragma INLINE (MAKERELATIVE_TIME, HOURS, MINUTES, SECONDS);

end RELATIVETIME_PKG;

-- Authors : Richard T. Irwin

-- Willie K. Bolick

-- Date : 29 August 1991

package body RELATIVETIMEPKG is

............................. MAKE_ RELATIVETIME

function MAKE RELATIVETIME

(HOURS, MINUTES NATURAL;

SECONDS : FLOAT) return RELATIVETIME is

begin

return FLOAT (HOURS * 3600) + FLOAT (MINUTES * 60) + SECONDS;

end MAKERELATIVE_TIME;

.................................. HOURS

function HOURS

T : RELATIVETIME) return NATURAL is

begin

return NATURAL (T / 3600.0 - 0.5);

end HOURS;

256

................................. M INUTES

function MINUTES

(T : RELATIVE TIME) return NATURAL is

begin

return NATURAL ((T - RELATIVE TIME (HOURS (T) * 3600)) /

60.0 - 0.5);

end MINUTES;

................................ SECONDS

function SECONDS

(T : RELATIVETIME) return FLOAT is

begin

return T - FLOAT (HOURS (T) * 3600) - FLOAT (MINUTES (T) * 60);

end SECONDS;

. o . o ° °. ° . o ° ..

end RELATIVETIMEPKG;

257

APPENDIX X

GPS CONNECTION CONSIDERATIONS

The connection between the GlobalPositioningSubsystem (Trimble 4000) and the

SUN Microstation SPARCstation 2 is with a cable using the RS-232 port on the Trimble

4000 and Comm-port I on the SPARCstation. A proper setup of the connectors pins at each

end of the cable is necessary to insure data transfer. The proper setup follows:

Trimble 4000 RS-232 connector pins (See Figure 20):

GROUND:= GROUND;

TXD(SEND):= SEND;

RXD(RECEIVE):= BLANK (no pin);

G Zd

TDX/RDX----O

RS-232 Connector

Figure 27: GPS CONNECT

SPARCstation Comm-port 1:

GROUND:= GROUND;

TXD(SEND:= BLANK (no pin);

RXD(RECEIVE):= RECEWE;

258

The network configuration in this case is simply a DTE setup in the Trimble 4000 and

a DCE in the SPARCstation. This setup is necessary because the Trimble 4000 will shut

down with an interrupt, if the SUN, via the RXD pin sends a "ready to receive" signal

accommodating the Trimble 4000 PROTOCOL.

259

LIST OF REFERENCES

[Ref. 1] Commander, Naval Sea Systems Command UNCLASSIFIED Letter 9410

OPR:61Y Serial 61Y/1036 to Superintendent, Naval Postgraduate School,

Subject: Statement of Work for Low Cost Combat Direction System, 20

December 1988.

[Ref. 2] Department of the Navy, (NAVSEA) 0967-LP-027-8602 System 9

Engineering Handbook Vol 1, Combat Direction System Model 5, February

1985.

[Ref. 3] Seveney, J., Steinberg, G.P., "Requirements Analysis for a Low Cost Combat

Direction System", Master's Thesis, Naval Postgraduate School, Monterey,

CA., June, 1990.

[Ref. 4] Department of the Navy. Military Specification(CONFIDENTIAL

NAVSEA) 0967-LP-027-8635. Combat Direction System (CDS)

Specification for Surface for Surface Ships (Model 4.1) (U), Vol. 1, Revision

5, April 1988.

[Ref. 5] Department of the Navy. Military Specification(CONFIDENTIAL

NAVSEA) 0967-LP-027-8635, Combat Direction System (CDS)

Specification for Surface for Surface Ships (Model 4.1) (U), Vol. 2, Revision

5. April 1988.

[Ref. 6] Department of Defense Directive 5200.28, Security Requirements for

Automatic Data Processing (ADP) Systems, 18 December 1972.

[Ref. 7] E. Yourdon, "Modern Structured Analysis", Yourdon Press by Prentice Hall,

N.J., 1989.

[Ref. 8] A. Tanenbaum. "Structured Computer Organization", Prentice Hall, Inc.,

Englewood Cliffs, N.J.,1984.

[Ref. 91 V. Berzins and Luqi, "Software Engineering with Abstractions: An

Integrated Approach to Software Development using Ada", Addison-

Wesley. 1988.

260

[Ref. 10] D. Been, P. Getto, A. Apodaca, "Object-Oriented Programming in a

Conventional Programming Environment", Computer Society Press of the

IEEE. WashingtonDC, 1989.

[Ref. 11] Grady Booch, "Software Engineering with Ada", Benjamin Cummings

Publishing Company. 1983.

[Ref. 12] R. Elmasri, S.B. Navathe, "Fundamentals of the Database Systems", The

Benjamin/Cummings Publishing CompanyInc., Redwood City, CA., 1989.

[Ref. 13] S. Faulk and D. Pamas, "On Synchronization in Hard-RealTime Systems",

Comm. of the ACM 31, 3, Mar 1988, pp 274-287.

[Ref. 14] W. Lorensen, "Object-Oriented Software Development in a Non-Object-

Oriented Environment." General Electric Technical Information Series

Report 86CRD 1 33,1986.

[Ref. 15] B. Meyer. "Object-Oriented Software Construction", Prentice Hall, Inc..

Englewood Cliffs, NJ,1988.

[Ref. 16] Buhn, R., Karan, G., Hayse. C.. Woodside., C., "Software CAD: a

Revolutionary Approach", IEEE Transactions on Software Engineering. Voi

15, No.3, pp235-249, Mar 89.

[Ref 17] Collins, M. J. Stratford-, "Ada: A Programmer's Conversion Course", R. J.

Acford Press. Chichester, West Sussex, England, 1982.

[Ref. 18] Dillon, L., "Verifying General Safety Properties of Ada Tasking Programs".

IEEE Transactions of Software Engineering, Vol 16. No. 1, p51-67, Jan 90.

[Ref. 19] Guaspari, D., Marceau, C., Polak, W., "Formal Verification of Ada

Programs", IEEE Transactions on Software Engineering, Vol 16, No. 9.

p1058-1076, Sep 90.

[Ref. 20] Jalote. Pankaj. "Functional Refinement and Nested Objects for Object-

Oriented Design", IEEE Transactions on Software Engineering. Vol 15. No.

3. p264-270, Mar 89.

261

[Ref. 21] ' loser, Louise, "Data Dependency Graphs for Ada Programs", IEEE

Transactions on Software Engineering, Vol. 16. No. 5, P498-527, May 90.

[Ref. 22] Sha, L., Goodenough. J.B.. "Real-Time Scheduling Theory and Ada",

Computer, Vol 23, No. 4, Published by IEEE Computer Society, p53-62, Apr

90.

[Ref. 23] Sommerville, I., Welland, R., Beer, S.. "Describing Software Design

Methodologies", The Computer Journal, The British Computer Society, Vol

30, No. 2, p128-133, Apr 87.

[Ref. 24] Schweiger, Jeffrey M. , "Structuring a Software Tool for Detecting Deadlock

Potential from the Formal Specification of a Distributed System", Master's

Thesis. Naval Postgraduate School, Monterey, CA., unfinished.

[Ref. 25] Vick, C. R., Ramamoorthy, C. V., "The Handbook of Software Engineering",

Van Nostrand Reinhold Company, New York, NY, 1984.

[Ref. 26] Department of Defense Military Standard 2167-A, Defense System Software

Development, 29 February 1988,

[Ref. 27] Department of Defense Military Standard 2168, Defense System Software

Quality Program, 29 February 1988,

[Ref. 28] American National Standard Institute Military Standard 1815A-1983,

Reference Manual for the Ada Programming Language, 17 February 1983.

[Ref. 29] Department of Defense, Mihtary Standard 480. Configuration Controt

Engineering changes. Deviations. and waivers.

[Ref. 30] OPSPEC 411.2 (CONFIDENTIAL). Naval Tactical Data System Model 4

Link II Operational Specification, Rev 2. 15 August 1985.

[Ref. 31] Department of Defense Military Standard 490, Specification Practices, May

1972.

[Ref. 32] SUN MICROSYSTEMS, SUN Systems overview, February 1986.

262

[Ref. 33] Skansholm, Jan, "Ada From The Beginning", Addison-Wesley publishing

company, New York, NY, 1988.

[Ref. 34] Chin. Yu-Chi, "The Navigation Data Logger for a Suitcase Navigation

System", Master's Thesis, Naval Postgraduate School, Monterey, CA.,

June, 1991.

[Ref. 35] DePaula Everton G., "A Tactical Database for the Low Cost Combat

Direction System", Master's Thesis, Naval Postgraduate School, Monterey,

CA., December, 1990

[Ref. 36] Department of Defense Military Standard 1679, Weapons System Software

Development. December 1978.

[Ref. 37] Naval Sea System Instruction 5400.57, Technical Responsibility and
Authority to perform Engineering Functions for Combat Subsystems and

Equipment, June 1978.

[Ref. 38] OPNAV Instruction 7700.1, Configuration of CDS and Combat Systems for

General Purpose Forces, 31 August 1973.

[Ref. 39] Interview between Mr. Dan Edwards, Naval Ocean Systems Center (code

412). San Diego, CA., and the authors. 9 July 1991.

[Ref. 40] Interview between Mr. Roy, Director Research (7162). Logicon, San Diego,

CA., and the authors, 5 August 1991.

[Ref. 41] Interview between Mr. George Sadowski, Fleet Combat Direction System

Support Activity, Dam Neck, VA.. and the authors, 22 June 1991.

263

INITIAL DISTRIBUTION LIST
Defense Technical Information Center 2
Cameron Station
Alexandna, VA 22304-6145

Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code CS I
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Office of the Chief of Naval Operations
Code OP-941
Washington, D.C. 20350-2000

Commander
Naval Sea Systems Command
ATTN: LCDR Scott Kelly
Code 06D3131
Washington, D.C. 20362-5 101

Commander
Naval Ocean Systems Center
Code 451
San Diego, CA 92152-5000

Commander
Naval Ocean Systems Center
Code 431
ATTN: Dan Edwards
San Diego, CA 92152-5000

264

Commander
Naval Sea Systems Command
ATTN: William L. Wilder
PMS-4123H
Arlington, VA 22202-5101

Dr. Valdis Berzins
Code 52Be
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940

Dr. Luqi
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940

LCDR (sel) Willie K. Bolick
1508 Willowbend Drive
Gautier, MS 39553

LT Richard T. Irwin
5130 Navajo Trail
Harnison, MI 48625

265

